
Study Report

Generated on September 15, 2025 at 07:14 AM

Report: Multimodal Agentic Software Architecture
for an RL-Capable Trading System

This report provides a focused codebase and architectural overview for constructing a
multimodal, agent-based trading system. The architecture leverages the Choco-Solver for
constraint-based optimization, the JADE platform for agent orchestration, and a
Reinforcement Learning (RL) component for adaptive strategy development. The primary
focus is on code snippets for the Choco-Solver implementation, as derived from the
provided materials.

1. Introduction: Multimodal Agentic Architecture for RL
Trading

1.1. Overview: Choco for optimization, JADE for agent
orchestration, RL for strategy adaptation.

Building a sophisticated automated trading system requires a modular and intelligent
architecture. A multimodal agentic approach provides this by separating concerns into
distinct, communicating software agents. In this proposed architecture:

• Choco-Solver serves as the core optimization engine. It ensures that all proposed
trading decisions (e.g., portfolio allocations) adhere to a predefined set of rules and
constraints, such as risk limits, diversification requirements, and capital allocation limits.

• JADE (Java Agent DEvelopment Framework) provides the distributed platform for
these agents to live, communicate, and coordinate. It orchestrates the flow of information
from market data agents to strategy agents and finally to execution agents.

• Reinforcement Learning (RL) introduces adaptability. An RL agent learns and refines
the trading strategy over time by interacting with the market environment, aiming to
maximize a reward signal (e.g., profit). Choco's role is crucial here, as it can define the
valid "action space" from which the RL agent can choose, ensuring all learned actions are
compliant.

2. Choco-Solver for Constraint-Based Trading Decisions

The foundation of the system's logic lies in defining what constitutes a valid trade or
portfolio. Choco-Solver is used to model these rules as a Constraint Satisfaction Problem
(CSP), allowing the system to find optimal and compliant solutions.

2.1. Prerequisites and Project Setup

To begin, your Java environment must be configured with JDK 8+ and Maven 3+. Once
configured, create a new Maven project in your IDE (source: Choco.pdf, Prerequisites).

Maven Dependency

Add the Choco-Solver library to your project by including the following dependency in your
pom.xml file. This will download and link the necessary library files.

[XML]

<dependencies>
 <dependency>
 <groupId>org.choco-solver</groupId>
 <artifactId>choco-solver</artifactId>
 <version>4.10.8</version>
 </dependency>
</dependencies>

(source: Choco.pdf, How to start)

2.2. Defining Trading Constraints and Variables

The core of the implementation involves defining the trading problem with variables and
constraints. Here, we model a portfolio allocation problem for n assets.

Model Initialization

First, instantiate a Model object, which will contain all variables and constraints for our
trading system.

[JAVA]

import org.chocosolver.solver.Model;
import org.chocosolver.solver.Solution;
import org.chocosolver.solver.variables.IntVar;

public class PortfolioOptimizer {
 public static void main(String[] args) {
 // 1. Initialize the Model
 Model model = new Model("TradingSystemPortfolio");
 }
}

(source: Choco.pdf, The Model)

Variable Declaration

Next, declare the variables. For a portfolio of 5 assets, we can define an array of integer
variables (IntVar) representing the percentage allocation for each asset, from 0% to
100%.

[JAVA]

// Continuing in main method...

// Number of assets in the portfolio
int nAssets = 5;

// Define an array of integer variables for asset allocations.
// Each variable represents the percentage allocation for an asset (0-100).
IntVar[] assetAllocations = model.intVarArray("Asset", nAssets, 0, 100);

(source: Choco.pdf, Some improvements)

Constraint Posting

This is where the trading rules are enforced. We post constraints to the model that any
valid solution must satisfy.

• Total Allocation Constraint: The sum of all asset allocations must equal 100%.

• Risk Constraint: No single asset can constitute more than 40% of the portfolio to ensure
diversification.

• Sector Constraint: To limit exposure, let's say the sum of the first two assets (e.g., tech
sector) cannot exceed 60%.

[JAVA]

// Continuing in main method...

// --- POSTING CONSTRAINTS ---

// 1. The sum of all allocations must be exactly 100%
model.sum(assetAllocations, "=", 100).post();

// 2. Risk Management: No single asset can have more than 40% allocation.
for (int i = 0; i < nAssets; i++) {
 model.arithm(assetAllocations[i], "<=", 40).post();
}

// 3. Sector Exposure: The sum of Asset[0] and Asset[1] (e.g., 'Tech Sector')
// must not exceed 60% of the portfolio.
model.arithm(assetAllocations[0], "+", assetAllocations[1], "<=", 60).post();

// 4. Minimum Allocation: To avoid trivial positions, if an asset is held,
// it must have at least 5% allocation. This is a more complex constraint.
// For each asset, either its allocation is 0 OR it is >= 5.
for (int i = 0; i < nAssets; i++) {
 model.ifThen(
 model.arithm(assetAllocations[i], ">", 0),
 model.arithm(assetAllocations[i], ">=", 5)
);
}

// Example of an 'allDifferent' style constraint, though less common for allocation.
// If we were picking from discrete fund IDs, this would ensure no duplicates.
// For this allocation model, arithmetical constraints are more relevant.
// (source: Choco.pdf, Choco has several types of constraints)

(source: Choco.pdf, The constraints)

2.3. Finding Optimal Solutions

Once the model is fully defined, you can use the solver to find a valid solution that satisfies
all posted constraints.

Solution Retrieval

The findSolution() method will search for a variable assignment that meets all rules. If a
valid portfolio allocation is found, the Solution object will contain it.

[JAVA]

// Continuing in main method...

// --- SOLVING THE PROBLEM ---

System.out.println("Searching for a valid portfolio allocation...");
Solution solution = model.getSolver().findSolution();

if (solution != null) {
 System.out.println("Solution Found!");
 System.out.println(solution.toString());
} else {
 System.out.println("No solution found that satisfies all constraints.");
}

(source: Choco.pdf, Solving the problem)

This Choco component can now be embedded within a larger agent to serve as a
"constraint checker" or "portfolio constructor" before any trade is executed.

3. JADE Agent Platform for Orchestration (Conceptual)

While the provided materials do not contain code for JADE, we can conceptually outline its
role in the architecture. JADE would manage the lifecycle and communication of the
various agents that comprise the trading system.

3.1. Designing Trading Agents

A minimal setup would include the following agents:

• MarketDataAgent: Responsible for subscribing to market data feeds (e.g., prices,
volumes) and publishing this information to other agents within the platform.

• StrategyAgent: The "brain" of the system. It subscribes to data from the MarketDataAgent.
It contains the RL logic for making high-level decisions and uses the Choco-Solver
component (defined above) to generate concrete, compliant trade actions (e.g., a target
portfolio).

• ExecutionAgent: Subscribes to trade actions from the StrategyAgent. It is responsible for
interfacing with a brokerage API to place, monitor, and manage orders.

3.2. Agent Communication and Interaction

Agents in JADE communicate via asynchronous message passing using FIPA-ACL (Agent
Communication Language).

• The MarketDataAgent would periodically send INFORM messages containing the latest
market state.

• The StrategyAgent, upon receiving new data, would process it, run its RL and Choco
models, and send a REQUEST message to the ExecutionAgent with the desired trades.

• The ExecutionAgent would then INFORM the StrategyAgent about the outcome of the trade
execution (e.g., CONFIRM or FAILURE).

(Specific code snippets for JADE agent implementation and communication are not
available in the provided materials.)

4. Reinforcement Learning Integration (Conceptual)

The RL component allows the system to learn and improve its trading strategy
automatically.

4.1. RL Agent for Dynamic Strategy Adaptation

The RL logic would reside within the StrategyAgent. The standard RL loop would be
applied to trading:

• State: The current market conditions, derived from the data provided by the
MarketDataAgent (e.g., price history, technical indicators, order book depth).

• Action: A trading decision. This is where Choco plays a critical role. The action is not a
raw trade but a desired portfolio structure that Choco has validated.

• Reward: A signal that measures the performance of an action. This is typically the profit
or loss (PnL) realized over a specific time step.

The RL algorithm (e.g., Q-Learning, PPO) would adjust its internal policy to favor actions
that historically lead to higher cumulative rewards.

4.2. Choco's Role in Defining RL Action Space or State
Constraints

A key challenge in applying RL to real-world problems like trading is ensuring that the
agent's actions are safe and compliant. Choco provides a powerful mechanism for this.

Instead of letting the RL agent choose any portfolio allocation, which could violate risk
rules, we use Choco to define the valid action space. The process would be:

• The RL agent outputs a high-level intention (e.g., "increase tech exposure" or a target
risk/return profile).

• This intention is translated into an objective function or additional temporary constraints
for the Choco model.

• The StrategyAgent invokes the Choco solver to find the optimal portfolio that both
satisfies the standing hard constraints (risk, diversification) and best meets the RL agent's
current objective.

• This valid portfolio becomes the action that is sent to the ExecutionAgent.

This approach ensures the RL agent can learn and explore freely within a "safe sandbox"
of pre-approved actions defined by the Choco constraint model.

(Specific code snippets for integrating Choco with a Reinforcement Learning framework
are not available in the provided materials.)

5. Conclusion

This report outlines a robust, multimodal agentic architecture for an RL-powered trading
system. The provided codebase demonstrates the practical implementation of the core
constraint-management component using Choco-Solver, which is responsible for
ensuring all trading decisions are compliant with predefined rules. Conceptually, JADE
provides the distributed agent framework for orchestrating the distinct tasks of data
collection, strategy, and execution. Finally, Reinforcement Learning offers a powerful
paradigm for dynamic strategy adaptation, with Choco serving the critical role of enforcing
safety and defining a valid action space. This layered approach creates a system that is
modular, intelligent, and capable of operating within safe, user-defined boundaries.

