Spaces:
Sleeping
Sleeping
Delete medical_chatbot.py
Browse files- medical_chatbot.py +0 -608
medical_chatbot.py
DELETED
|
@@ -1,608 +0,0 @@
|
|
| 1 |
-
# Setup and Installation
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
print("🖥️ System Check:")
|
| 5 |
-
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 6 |
-
if torch.cuda.is_available():
|
| 7 |
-
print(f"GPU device: {torch.cuda.get_device_name(0)}")
|
| 8 |
-
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
|
| 9 |
-
else:
|
| 10 |
-
print("⚠️ No GPU detected - BioGPT will run on CPU")
|
| 11 |
-
|
| 12 |
-
print("\n🔧 Loading required packages...")
|
| 13 |
-
|
| 14 |
-
# Import Libraries
|
| 15 |
-
|
| 16 |
-
import os
|
| 17 |
-
import re
|
| 18 |
-
import torch
|
| 19 |
-
import warnings
|
| 20 |
-
import numpy as np
|
| 21 |
-
import faiss # FAISS for vector search
|
| 22 |
-
from transformers import (
|
| 23 |
-
AutoTokenizer,
|
| 24 |
-
AutoModelForCausalLM,
|
| 25 |
-
pipeline,
|
| 26 |
-
BitsAndBytesConfig
|
| 27 |
-
)
|
| 28 |
-
from sentence_transformers import SentenceTransformer
|
| 29 |
-
from typing import List, Dict, Optional
|
| 30 |
-
import time
|
| 31 |
-
from datetime import datetime
|
| 32 |
-
import json
|
| 33 |
-
import pickle
|
| 34 |
-
|
| 35 |
-
# Suppress warnings for cleaner output
|
| 36 |
-
warnings.filterwarnings('ignore')
|
| 37 |
-
|
| 38 |
-
print("📚 Libraries imported successfully!")
|
| 39 |
-
print(f"🔍 FAISS version: {faiss.__version__}")
|
| 40 |
-
print("🎯 Using FAISS for vector search")
|
| 41 |
-
|
| 42 |
-
# BioGPT Medical Chatbot Class
|
| 43 |
-
|
| 44 |
-
class ColabBioGPTChatbot:
|
| 45 |
-
def __init__(self, use_gpu=True, use_8bit=True):
|
| 46 |
-
"""Initialize BioGPT chatbot optimized for deployment"""
|
| 47 |
-
print("🏥 Initializing Professional BioGPT Medical Chatbot...")
|
| 48 |
-
|
| 49 |
-
# Force CPU for HF Spaces if needed
|
| 50 |
-
self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
|
| 51 |
-
self.use_8bit = use_8bit and torch.cuda.is_available()
|
| 52 |
-
|
| 53 |
-
print(f"🖥️ Using device: {self.device}")
|
| 54 |
-
if self.use_8bit:
|
| 55 |
-
print("💾 Using 8-bit quantization for memory efficiency")
|
| 56 |
-
|
| 57 |
-
# Setup components
|
| 58 |
-
self.setup_embeddings()
|
| 59 |
-
self.setup_faiss_index()
|
| 60 |
-
self.setup_biogpt()
|
| 61 |
-
|
| 62 |
-
# Conversation tracking
|
| 63 |
-
self.conversation_history = []
|
| 64 |
-
self.knowledge_chunks = []
|
| 65 |
-
|
| 66 |
-
print("✅ BioGPT Medical Chatbot ready for professional medical assistance!")
|
| 67 |
-
|
| 68 |
-
def setup_embeddings(self):
|
| 69 |
-
"""Setup medical-optimized embeddings"""
|
| 70 |
-
print("🔧 Loading medical embeddings...")
|
| 71 |
-
try:
|
| 72 |
-
# Use a smaller, more efficient model for deployment
|
| 73 |
-
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 74 |
-
self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
|
| 75 |
-
print(f"✅ Embeddings loaded (dimension: {self.embedding_dim})")
|
| 76 |
-
self.use_embeddings = True
|
| 77 |
-
except Exception as e:
|
| 78 |
-
print(f"⚠️ Embeddings failed: {e}")
|
| 79 |
-
self.embedding_model = None
|
| 80 |
-
self.embedding_dim = 384
|
| 81 |
-
self.use_embeddings = False
|
| 82 |
-
|
| 83 |
-
def setup_faiss_index(self):
|
| 84 |
-
"""Setup faiss for CPU-based vector search"""
|
| 85 |
-
print("🔧 Setting up FAISS vector database...")
|
| 86 |
-
try:
|
| 87 |
-
print('Using CPU FAISS index for maximum compatibility')
|
| 88 |
-
self.faiss_index = faiss.IndexFlatIP(self.embedding_dim)
|
| 89 |
-
self.use_gpu_faiss = False
|
| 90 |
-
self.faiss_ready = True
|
| 91 |
-
self.collection = self.faiss_index
|
| 92 |
-
print("✅ FAISS CPU index initialized successfully")
|
| 93 |
-
except Exception as e:
|
| 94 |
-
print(f"❌ FAISS setup failed: {e}")
|
| 95 |
-
self.faiss_index = None
|
| 96 |
-
self.faiss_ready = False
|
| 97 |
-
self.collection = None
|
| 98 |
-
|
| 99 |
-
def setup_biogpt(self):
|
| 100 |
-
"""Setup BioGPT model with optimizations for deployment"""
|
| 101 |
-
print("🧠 Loading BioGPT model...")
|
| 102 |
-
|
| 103 |
-
# Try BioGPT first, fallback to smaller models if needed
|
| 104 |
-
model_options = [
|
| 105 |
-
"microsoft/BioGPT-Large",
|
| 106 |
-
"microsoft/BioGPT", # Smaller version
|
| 107 |
-
"microsoft/DialoGPT-medium", # Fallback
|
| 108 |
-
"gpt2" # Final fallback
|
| 109 |
-
]
|
| 110 |
-
|
| 111 |
-
for model_name in model_options:
|
| 112 |
-
try:
|
| 113 |
-
print(f" Attempting to load: {model_name}")
|
| 114 |
-
|
| 115 |
-
# Setup quantization config for memory efficiency
|
| 116 |
-
if self.use_8bit and "BioGPT" in model_name:
|
| 117 |
-
quantization_config = BitsAndBytesConfig(
|
| 118 |
-
load_in_8bit=True,
|
| 119 |
-
llm_int8_threshold=6.0,
|
| 120 |
-
llm_int8_has_fp16_weight=False,
|
| 121 |
-
)
|
| 122 |
-
else:
|
| 123 |
-
quantization_config = None
|
| 124 |
-
|
| 125 |
-
# Load tokenizer
|
| 126 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 127 |
-
|
| 128 |
-
# Set padding token
|
| 129 |
-
if self.tokenizer.pad_token is None:
|
| 130 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 131 |
-
|
| 132 |
-
# Load model with proper settings for deployment
|
| 133 |
-
start_time = time.time()
|
| 134 |
-
|
| 135 |
-
model_kwargs = {
|
| 136 |
-
"torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
|
| 137 |
-
"trust_remote_code": True,
|
| 138 |
-
"low_cpu_mem_usage": True, # Important for deployment
|
| 139 |
-
}
|
| 140 |
-
|
| 141 |
-
if quantization_config:
|
| 142 |
-
model_kwargs["quantization_config"] = quantization_config
|
| 143 |
-
model_kwargs["device_map"] = "auto"
|
| 144 |
-
|
| 145 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 146 |
-
model_name,
|
| 147 |
-
**model_kwargs
|
| 148 |
-
)
|
| 149 |
-
|
| 150 |
-
# Move to device if not using device_map
|
| 151 |
-
if self.device == "cuda" and quantization_config is None:
|
| 152 |
-
self.model = self.model.to(self.device)
|
| 153 |
-
|
| 154 |
-
load_time = time.time() - start_time
|
| 155 |
-
print(f"✅ {model_name} loaded successfully! ({load_time:.1f} seconds)")
|
| 156 |
-
|
| 157 |
-
# Test the model
|
| 158 |
-
self.test_model()
|
| 159 |
-
break # Success, exit the loop
|
| 160 |
-
|
| 161 |
-
except Exception as e:
|
| 162 |
-
print(f"❌ {model_name} loading failed: {e}")
|
| 163 |
-
if model_name == model_options[-1]: # Last option failed
|
| 164 |
-
print("❌ All models failed to load")
|
| 165 |
-
self.model = None
|
| 166 |
-
self.tokenizer = None
|
| 167 |
-
continue
|
| 168 |
-
|
| 169 |
-
def test_model(self):
|
| 170 |
-
"""Test the loaded model with a simple query"""
|
| 171 |
-
print("🧪 Testing model...")
|
| 172 |
-
try:
|
| 173 |
-
test_prompt = "Fever in children can be caused by"
|
| 174 |
-
inputs = self.tokenizer(test_prompt, return_tensors="pt")
|
| 175 |
-
|
| 176 |
-
if self.device == "cuda":
|
| 177 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 178 |
-
|
| 179 |
-
with torch.no_grad():
|
| 180 |
-
outputs = self.model.generate(
|
| 181 |
-
**inputs,
|
| 182 |
-
max_new_tokens=20,
|
| 183 |
-
do_sample=True,
|
| 184 |
-
temperature=0.7,
|
| 185 |
-
pad_token_id=self.tokenizer.eos_token_id
|
| 186 |
-
)
|
| 187 |
-
|
| 188 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 189 |
-
print(f"✅ Model test successful!")
|
| 190 |
-
print(f" Test response: {response}")
|
| 191 |
-
|
| 192 |
-
except Exception as e:
|
| 193 |
-
print(f"⚠️ Model test failed: {e}")
|
| 194 |
-
|
| 195 |
-
def load_medical_data(self, file_path: str):
|
| 196 |
-
"""Load and process medical data with progress tracking"""
|
| 197 |
-
print(f"📖 Loading medical data from {file_path}...")
|
| 198 |
-
|
| 199 |
-
try:
|
| 200 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
| 201 |
-
text = f.read()
|
| 202 |
-
print(f"📄 File loaded: {len(text):,} characters")
|
| 203 |
-
except FileNotFoundError:
|
| 204 |
-
print(f"❌ File {file_path} not found!")
|
| 205 |
-
return False
|
| 206 |
-
except Exception as e:
|
| 207 |
-
print(f"❌ Error loading file: {e}")
|
| 208 |
-
return False
|
| 209 |
-
|
| 210 |
-
# Create chunks optimized for medical content
|
| 211 |
-
print("📝 Creating medical-optimized chunks...")
|
| 212 |
-
chunks = self.create_medical_chunks(text)
|
| 213 |
-
print(f"📋 Created {len(chunks)} medical chunks")
|
| 214 |
-
|
| 215 |
-
self.knowledge_chunks = chunks
|
| 216 |
-
|
| 217 |
-
# Generate embeddings with progress and add to FAISS index
|
| 218 |
-
if self.use_embeddings and self.embedding_model and self.faiss_ready:
|
| 219 |
-
return self.generate_embeddings_with_progress(chunks)
|
| 220 |
-
|
| 221 |
-
print("✅ Medical data loaded (text search mode)")
|
| 222 |
-
return True
|
| 223 |
-
|
| 224 |
-
def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
|
| 225 |
-
"""Create medically-optimized text chunks"""
|
| 226 |
-
chunks = []
|
| 227 |
-
|
| 228 |
-
# Split by medical sections first
|
| 229 |
-
medical_sections = self.split_by_medical_sections(text)
|
| 230 |
-
|
| 231 |
-
chunk_id = 0
|
| 232 |
-
for section in medical_sections:
|
| 233 |
-
if len(section.split()) > chunk_size:
|
| 234 |
-
# Split large sections by sentences
|
| 235 |
-
sentences = re.split(r'[.!?]+', section)
|
| 236 |
-
current_chunk = ""
|
| 237 |
-
|
| 238 |
-
for sentence in sentences:
|
| 239 |
-
sentence = sentence.strip()
|
| 240 |
-
if not sentence:
|
| 241 |
-
continue
|
| 242 |
-
|
| 243 |
-
if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
|
| 244 |
-
current_chunk += sentence + ". "
|
| 245 |
-
else:
|
| 246 |
-
if current_chunk.strip():
|
| 247 |
-
chunks.append({
|
| 248 |
-
'id': chunk_id,
|
| 249 |
-
'text': current_chunk.strip(),
|
| 250 |
-
'medical_focus': self.identify_medical_focus(current_chunk)
|
| 251 |
-
})
|
| 252 |
-
chunk_id += 1
|
| 253 |
-
current_chunk = sentence + ". "
|
| 254 |
-
|
| 255 |
-
if current_chunk.strip():
|
| 256 |
-
chunks.append({
|
| 257 |
-
'id': chunk_id,
|
| 258 |
-
'text': current_chunk.strip(),
|
| 259 |
-
'medical_focus': self.identify_medical_focus(current_chunk)
|
| 260 |
-
})
|
| 261 |
-
chunk_id += 1
|
| 262 |
-
else:
|
| 263 |
-
chunks.append({
|
| 264 |
-
'id': chunk_id,
|
| 265 |
-
'text': section,
|
| 266 |
-
'medical_focus': self.identify_medical_focus(section)
|
| 267 |
-
})
|
| 268 |
-
chunk_id += 1
|
| 269 |
-
|
| 270 |
-
return chunks
|
| 271 |
-
|
| 272 |
-
def split_by_medical_sections(self, text: str) -> List[str]:
|
| 273 |
-
"""Split text by medical sections"""
|
| 274 |
-
# Look for medical section headers
|
| 275 |
-
section_patterns = [
|
| 276 |
-
r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
|
| 277 |
-
r'\n\s*\d+\.\s+', # Numbered sections
|
| 278 |
-
r'\n\n+' # Paragraph breaks
|
| 279 |
-
]
|
| 280 |
-
|
| 281 |
-
sections = [text]
|
| 282 |
-
for pattern in section_patterns:
|
| 283 |
-
new_sections = []
|
| 284 |
-
for section in sections:
|
| 285 |
-
splits = re.split(pattern, section, flags=re.IGNORECASE)
|
| 286 |
-
new_sections.extend([s.strip() for s in splits if len(s.strip()) > 100])
|
| 287 |
-
sections = new_sections
|
| 288 |
-
|
| 289 |
-
return sections
|
| 290 |
-
|
| 291 |
-
def identify_medical_focus(self, text: str) -> str:
|
| 292 |
-
"""Identify the medical focus of a text chunk"""
|
| 293 |
-
text_lower = text.lower()
|
| 294 |
-
|
| 295 |
-
# Medical categories
|
| 296 |
-
categories = {
|
| 297 |
-
'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
|
| 298 |
-
'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
|
| 299 |
-
'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
|
| 300 |
-
'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
|
| 301 |
-
'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
|
| 302 |
-
}
|
| 303 |
-
|
| 304 |
-
for category, keywords in categories.items():
|
| 305 |
-
if any(keyword in text_lower for keyword in keywords):
|
| 306 |
-
return category
|
| 307 |
-
|
| 308 |
-
return 'general_medical'
|
| 309 |
-
|
| 310 |
-
def generate_embeddings_with_progress(self, chunks: List[Dict]) -> bool:
|
| 311 |
-
"""Generate embeddings with progress tracking and add to FAISS index"""
|
| 312 |
-
print("🔮 Generating medical embeddings and adding to FAISS index...")
|
| 313 |
-
|
| 314 |
-
if not self.embedding_model or not self.faiss_index:
|
| 315 |
-
print("❌ Embedding model or FAISS index not available.")
|
| 316 |
-
return False
|
| 317 |
-
|
| 318 |
-
try:
|
| 319 |
-
texts = [chunk['text'] for chunk in chunks]
|
| 320 |
-
|
| 321 |
-
# Generate embeddings in batches with progress
|
| 322 |
-
batch_size = 32
|
| 323 |
-
all_embeddings = []
|
| 324 |
-
|
| 325 |
-
for i in range(0, len(texts), batch_size):
|
| 326 |
-
batch_texts = texts[i:i+batch_size]
|
| 327 |
-
batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False)
|
| 328 |
-
all_embeddings.extend(batch_embeddings)
|
| 329 |
-
|
| 330 |
-
# Show progress
|
| 331 |
-
progress = min(i + batch_size, len(texts))
|
| 332 |
-
print(f" Progress: {progress}/{len(texts)} chunks processed", end='\r')
|
| 333 |
-
|
| 334 |
-
print(f"\n ✅ Generated embeddings for {len(texts)} chunks")
|
| 335 |
-
|
| 336 |
-
# Add embeddings to FAISS index
|
| 337 |
-
print("💾 Adding embeddings to FAISS index...")
|
| 338 |
-
self.faiss_index.add(np.array(all_embeddings))
|
| 339 |
-
|
| 340 |
-
print("✅ Medical embeddings added to FAISS index successfully!")
|
| 341 |
-
return True
|
| 342 |
-
|
| 343 |
-
except Exception as e:
|
| 344 |
-
print(f"❌ Embedding generation or FAISS add failed: {e}")
|
| 345 |
-
return False
|
| 346 |
-
|
| 347 |
-
def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
|
| 348 |
-
"""Retrieve relevant medical context using embeddings or keyword search"""
|
| 349 |
-
if self.use_embeddings and self.embedding_model and self.faiss_ready:
|
| 350 |
-
try:
|
| 351 |
-
# Generate query embedding
|
| 352 |
-
query_embedding = self.embedding_model.encode([query])
|
| 353 |
-
|
| 354 |
-
# Search for similar content in FAISS index
|
| 355 |
-
distances, indices = self.faiss_index.search(np.array(query_embedding), n_results)
|
| 356 |
-
|
| 357 |
-
# Retrieve the corresponding chunks
|
| 358 |
-
context_chunks = [self.knowledge_chunks[i]['text'] for i in indices[0] if i != -1]
|
| 359 |
-
|
| 360 |
-
if context_chunks:
|
| 361 |
-
return context_chunks
|
| 362 |
-
|
| 363 |
-
except Exception as e:
|
| 364 |
-
print(f"⚠️ Embedding search failed: {e}")
|
| 365 |
-
|
| 366 |
-
# Fallback to keyword search
|
| 367 |
-
print("⚠️ Falling back to keyword search.")
|
| 368 |
-
return self.keyword_search_medical(query, n_results)
|
| 369 |
-
|
| 370 |
-
def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
|
| 371 |
-
"""Medical-focused keyword search"""
|
| 372 |
-
if not self.knowledge_chunks:
|
| 373 |
-
return []
|
| 374 |
-
|
| 375 |
-
query_words = set(query.lower().split())
|
| 376 |
-
chunk_scores = []
|
| 377 |
-
|
| 378 |
-
for chunk_info in self.knowledge_chunks:
|
| 379 |
-
chunk_text = chunk_info['text']
|
| 380 |
-
chunk_words = set(chunk_text.lower().split())
|
| 381 |
-
|
| 382 |
-
# Calculate relevance score
|
| 383 |
-
word_overlap = len(query_words.intersection(chunk_words))
|
| 384 |
-
base_score = word_overlap / len(query_words) if query_words else 0
|
| 385 |
-
|
| 386 |
-
# Boost medical content
|
| 387 |
-
medical_boost = 0
|
| 388 |
-
if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
|
| 389 |
-
medical_boost = 0.5
|
| 390 |
-
|
| 391 |
-
final_score = base_score + medical_boost
|
| 392 |
-
|
| 393 |
-
if final_score > 0:
|
| 394 |
-
chunk_scores.append((final_score, chunk_text))
|
| 395 |
-
|
| 396 |
-
# Return top matches
|
| 397 |
-
chunk_scores.sort(reverse=True)
|
| 398 |
-
return [chunk for _, chunk in chunk_scores[:n_results]]
|
| 399 |
-
|
| 400 |
-
def generate_biogpt_response(self, context: str, query: str) -> str:
|
| 401 |
-
"""Generate medical response using BioGPT only"""
|
| 402 |
-
if not self.model or not self.tokenizer:
|
| 403 |
-
return "⚠️ Medical AI model not available. This chatbot requires BioGPT for accurate medical information. Please check the setup or try restarting."
|
| 404 |
-
|
| 405 |
-
try:
|
| 406 |
-
# Create medical-focused prompt
|
| 407 |
-
prompt = f"""Medical Context: {context[:800]}
|
| 408 |
-
|
| 409 |
-
Question: {query}
|
| 410 |
-
|
| 411 |
-
Medical Answer:"""
|
| 412 |
-
|
| 413 |
-
# Tokenize input
|
| 414 |
-
inputs = self.tokenizer(
|
| 415 |
-
prompt,
|
| 416 |
-
return_tensors="pt",
|
| 417 |
-
truncation=True,
|
| 418 |
-
max_length=1024
|
| 419 |
-
)
|
| 420 |
-
|
| 421 |
-
# Move inputs to the correct device
|
| 422 |
-
if self.device == "cuda":
|
| 423 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 424 |
-
|
| 425 |
-
# Generate response
|
| 426 |
-
with torch.no_grad():
|
| 427 |
-
outputs = self.model.generate(
|
| 428 |
-
**inputs,
|
| 429 |
-
max_new_tokens=150,
|
| 430 |
-
do_sample=True,
|
| 431 |
-
temperature=0.7,
|
| 432 |
-
top_p=0.9,
|
| 433 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
| 434 |
-
repetition_penalty=1.1
|
| 435 |
-
)
|
| 436 |
-
|
| 437 |
-
# Decode response
|
| 438 |
-
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 439 |
-
|
| 440 |
-
# Extract just the generated part
|
| 441 |
-
if "Medical Answer:" in full_response:
|
| 442 |
-
generated_response = full_response.split("Medical Answer:")[-1].strip()
|
| 443 |
-
else:
|
| 444 |
-
generated_response = full_response[len(prompt):].strip()
|
| 445 |
-
|
| 446 |
-
# Clean up response
|
| 447 |
-
cleaned_response = self.clean_medical_response(generated_response)
|
| 448 |
-
|
| 449 |
-
return cleaned_response
|
| 450 |
-
|
| 451 |
-
except Exception as e:
|
| 452 |
-
print(f"⚠️ BioGPT generation failed: {e}")
|
| 453 |
-
return "⚠️ Unable to generate medical response. The medical AI model encountered an error. Please try rephrasing your question or contact support."
|
| 454 |
-
|
| 455 |
-
def clean_medical_response(self, response: str) -> str:
|
| 456 |
-
"""Clean and format medical response"""
|
| 457 |
-
# Remove incomplete sentences and limit length
|
| 458 |
-
sentences = re.split(r'[.!?]+', response)
|
| 459 |
-
clean_sentences = []
|
| 460 |
-
|
| 461 |
-
for sentence in sentences:
|
| 462 |
-
sentence = sentence.strip()
|
| 463 |
-
if len(sentence) > 10 and not sentence.endswith(('and', 'or', 'but', 'however')):
|
| 464 |
-
clean_sentences.append(sentence)
|
| 465 |
-
if len(clean_sentences) >= 3: # Limit to 3 sentences
|
| 466 |
-
break
|
| 467 |
-
|
| 468 |
-
if clean_sentences:
|
| 469 |
-
cleaned = '. '.join(clean_sentences) + '.'
|
| 470 |
-
else:
|
| 471 |
-
cleaned = response[:200] + '...' if len(response) > 200 else response
|
| 472 |
-
|
| 473 |
-
return cleaned
|
| 474 |
-
|
| 475 |
-
def fallback_response(self, context: str, query: str) -> str:
|
| 476 |
-
"""Fallback response when BioGPT fails"""
|
| 477 |
-
# Extract key sentences from context
|
| 478 |
-
sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
|
| 479 |
-
|
| 480 |
-
if sentences:
|
| 481 |
-
response = sentences[0] + '.'
|
| 482 |
-
if len(sentences) > 1:
|
| 483 |
-
response += ' ' + sentences[1] + '.'
|
| 484 |
-
else:
|
| 485 |
-
response = context[:300] + '...'
|
| 486 |
-
|
| 487 |
-
return response
|
| 488 |
-
|
| 489 |
-
def handle_conversational_interactions(self, query: str) -> Optional[str]:
|
| 490 |
-
"""Handle comprehensive conversational interactions"""
|
| 491 |
-
query_lower = query.lower().strip()
|
| 492 |
-
|
| 493 |
-
# Use more specific patterns for greetings
|
| 494 |
-
greeting_patterns = [
|
| 495 |
-
r'^\s*(hello|hi|hey|hiya|howdy)\s*$',
|
| 496 |
-
r'^\s*(good morning|good afternoon|good evening|good day)\s*$',
|
| 497 |
-
r'^\s*(what\'s up|whats up|sup|yo)\s*$',
|
| 498 |
-
r'^\s*(greetings|salutations)\s*$',
|
| 499 |
-
r'^\s*(how are you|how are you doing|how\'s it going|hows it going)\s*$',
|
| 500 |
-
r'^\s*(good to meet you|nice to meet you|pleased to meet you)\s*$'
|
| 501 |
-
]
|
| 502 |
-
|
| 503 |
-
for pattern in greeting_patterns:
|
| 504 |
-
if re.match(pattern, query_lower):
|
| 505 |
-
responses = [
|
| 506 |
-
"👋 Hello! I'm BioGPT, your professional medical AI assistant specialized in pediatric medicine. I'm here to provide evidence-based medical information. What health concern can I help you with today?",
|
| 507 |
-
"🏥 Hi there! I'm a medical AI assistant powered by BioGPT, trained on medical literature. I can help answer questions about children's health and medical conditions. How can I assist you?",
|
| 508 |
-
"👋 Greetings! I'm your AI medical consultant, ready to help with pediatric health questions using the latest medical knowledge. What would you like to know about?"
|
| 509 |
-
]
|
| 510 |
-
return np.random.choice(responses)
|
| 511 |
-
|
| 512 |
-
# Handle thanks and other conversational patterns...
|
| 513 |
-
# (keeping the rest of the conversational handling as before)
|
| 514 |
-
|
| 515 |
-
# Return None if no conversational pattern matches
|
| 516 |
-
return None
|
| 517 |
-
|
| 518 |
-
def chat(self, query: str) -> str:
|
| 519 |
-
"""Main chat function with BioGPT medical-only responses"""
|
| 520 |
-
if not query.strip():
|
| 521 |
-
return "Hello! I'm BioGPT, your professional medical AI assistant. How can I help you with pediatric medical questions today?"
|
| 522 |
-
|
| 523 |
-
# Handle comprehensive conversational interactions first
|
| 524 |
-
conversational_response = self.handle_conversational_interactions(query)
|
| 525 |
-
if conversational_response:
|
| 526 |
-
# Add to conversation history
|
| 527 |
-
self.conversation_history.append({
|
| 528 |
-
'query': query,
|
| 529 |
-
'response': conversational_response,
|
| 530 |
-
'timestamp': datetime.now().isoformat(),
|
| 531 |
-
'type': 'conversational'
|
| 532 |
-
})
|
| 533 |
-
return conversational_response
|
| 534 |
-
|
| 535 |
-
# Check if medical model is available
|
| 536 |
-
if not self.model or not self.tokenizer:
|
| 537 |
-
return "⚠️ **Medical AI Unavailable**: This chatbot requires BioGPT for accurate medical information. The medical model failed to load. Please contact support or try restarting the application."
|
| 538 |
-
|
| 539 |
-
if not self.knowledge_chunks:
|
| 540 |
-
return "Please load medical data first to access the medical knowledge base."
|
| 541 |
-
|
| 542 |
-
print(f"🔍 Processing medical query: {query}")
|
| 543 |
-
|
| 544 |
-
# Retrieve relevant medical context using FAISS or keyword search
|
| 545 |
-
start_time = time.time()
|
| 546 |
-
context = self.retrieve_medical_context(query)
|
| 547 |
-
retrieval_time = time.time() - start_time
|
| 548 |
-
|
| 549 |
-
if not context:
|
| 550 |
-
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
|
| 551 |
-
|
| 552 |
-
print(f" 📚 Context retrieved ({retrieval_time:.2f}s)")
|
| 553 |
-
|
| 554 |
-
# Generate response with BioGPT
|
| 555 |
-
start_time = time.time()
|
| 556 |
-
main_context = '\n\n'.join(context)
|
| 557 |
-
response = self.generate_biogpt_response(main_context, query)
|
| 558 |
-
generation_time = time.time() - start_time
|
| 559 |
-
|
| 560 |
-
print(f" 🧠 Response generated ({generation_time:.2f}s)")
|
| 561 |
-
|
| 562 |
-
# Format final response
|
| 563 |
-
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
|
| 564 |
-
|
| 565 |
-
# Add to conversation history
|
| 566 |
-
self.conversation_history.append({
|
| 567 |
-
'query': query,
|
| 568 |
-
'response': final_response,
|
| 569 |
-
'timestamp': datetime.now().isoformat(),
|
| 570 |
-
'retrieval_time': retrieval_time,
|
| 571 |
-
'generation_time': generation_time,
|
| 572 |
-
'type': 'medical'
|
| 573 |
-
})
|
| 574 |
-
|
| 575 |
-
return final_response
|
| 576 |
-
|
| 577 |
-
def get_conversation_summary(self) -> Dict:
|
| 578 |
-
"""Get conversation statistics"""
|
| 579 |
-
if not self.conversation_history:
|
| 580 |
-
return {"message": "No conversations yet"}
|
| 581 |
-
|
| 582 |
-
# Filter medical conversations for performance stats
|
| 583 |
-
medical_conversations = [h for h in self.conversation_history if h.get('type') == 'medical']
|
| 584 |
-
|
| 585 |
-
if not medical_conversations:
|
| 586 |
-
return {
|
| 587 |
-
"total_conversations": len(self.conversation_history),
|
| 588 |
-
"medical_conversations": 0,
|
| 589 |
-
"conversational_interactions": len(self.conversation_history),
|
| 590 |
-
"model_info": "BioGPT" if self.model and "BioGPT" in str(type(self.model)) else "Fallback Model",
|
| 591 |
-
"vector_search": "FAISS CPU" if self.faiss_ready else "Keyword Search",
|
| 592 |
-
"device": self.device
|
| 593 |
-
}
|
| 594 |
-
|
| 595 |
-
avg_retrieval_time = sum(h.get('retrieval_time', 0) for h in medical_conversations) / len(medical_conversations)
|
| 596 |
-
avg_generation_time = sum(h.get('generation_time', 0) for h in medical_conversations) / len(medical_conversations)
|
| 597 |
-
|
| 598 |
-
return {
|
| 599 |
-
"total_conversations": len(self.conversation_history),
|
| 600 |
-
"medical_conversations": len(medical_conversations),
|
| 601 |
-
"conversational_interactions": len(self.conversation_history) - len(medical_conversations),
|
| 602 |
-
"avg_retrieval_time": f"{avg_retrieval_time:.2f}s",
|
| 603 |
-
"avg_generation_time": f"{avg_generation_time:.2f}s",
|
| 604 |
-
"model_info": "BioGPT" if self.model and "BioGPT" in str(type(self.model)) else "Fallback Model",
|
| 605 |
-
"vector_search": "FAISS CPU" if self.faiss_ready else "Keyword Search",
|
| 606 |
-
"device": self.device,
|
| 607 |
-
"quantization": "8-bit" if self.use_8bit else "16-bit/32-bit"
|
| 608 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|