Spaces:
Sleeping
Sleeping
File size: 5,551 Bytes
5650eef 3161f27 95077fc 5650eef c7f6ca2 5650eef 2b966bc 5650eef 95077fc 5650eef 47744e9 5650eef cdd10be 5650eef 95077fc f0e9326 f8bf084 47744e9 f0e9326 2d66c51 95077fc 5650eef c7f6ca2 5650eef 95077fc 65fdafd 95077fc cdd10be 95077fc 5650eef 95077fc 5650eef 95077fc 5650eef 95077fc 5650eef c7f6ca2 5650eef 95077fc 5650eef 47744e9 5650eef f0e9326 5650eef 95077fc 5650eef 47744e9 5650eef cdd10be 5650eef 95077fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
import numpy as np
import random
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, StableDiffusionPipeline
from peft import PeftModel, LoraConfig
import torch
from rembg import remove
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
model,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
lora_scale,
num_inference_steps,
remove_background,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
if model == "Ramzes":
pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
pipe.unet = PeftModel.from_pretrained(pipe.unet, "Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="unet")
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="text_encoder")
pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
else:
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
pipe = pipe.to(device)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
if remove_background:
image = remove(image)
return image, seed
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
model = gr.Dropdown(
choices=["stabilityai/sdxl-turbo", "CompVis/stable-diffusion-v1-4", "stable-diffusion-v1-5/stable-diffusion-v1-5", "Ramzes"],
value=model_repo_id,
label="Model",
info="Choose which diffusion model to use"
)
with gr.Row():
remove_background = gr.Checkbox(
label="Delete background?", value=True
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.9
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=3, # Replace with defaults that work for your model
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model,
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
lora_scale,
num_inference_steps,
remove_background
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |