File size: 5,551 Bytes
5650eef
 
 
 
 
3161f27
95077fc
5650eef
c7f6ca2
5650eef
 
 
 
 
 
2b966bc
5650eef
 
 
95077fc
5650eef
 
 
 
 
 
 
47744e9
5650eef
cdd10be
5650eef
 
 
 
 
 
 
95077fc
 
 
 
 
 
f0e9326
 
 
f8bf084
 
47744e9
 
f0e9326
 
2d66c51
95077fc
5650eef
 
 
 
 
 
 
 
 
 
c7f6ca2
 
 
5650eef
 
 
 
 
 
 
 
 
 
 
 
 
95077fc
 
 
65fdafd
95077fc
 
 
 
 
cdd10be
 
 
 
95077fc
5650eef
 
 
 
 
 
 
 
 
 
 
 
 
95077fc
5650eef
 
 
 
95077fc
5650eef
 
 
 
 
 
 
95077fc
5650eef
 
 
c7f6ca2
5650eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95077fc
5650eef
 
47744e9
 
 
 
 
 
 
 
5650eef
 
 
 
 
f0e9326
5650eef
 
 
 
 
 
95077fc
5650eef
 
 
 
 
 
 
47744e9
5650eef
cdd10be
5650eef
 
 
 
 
95077fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
import numpy as np
import random

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, StableDiffusionPipeline
from peft import PeftModel, LoraConfig
import torch
from rembg import remove

model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024



# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    model,
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    lora_scale,
    num_inference_steps,
    remove_background,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    device = "cuda" if torch.cuda.is_available() else "cpu"

    if torch.cuda.is_available():
        torch_dtype = torch.float16
    else:
        torch_dtype = torch.float32

    if model == "Ramzes":
        pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch_dtype)
        pipe.unet = PeftModel.from_pretrained(pipe.unet, "Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="unet")
        pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, "Bordoglor/Ramzes_adapter_sd_v1.5", subfolder="text_encoder")
        pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
        pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
    else:     
        pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype)
    pipe = pipe.to(device)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    if remove_background:
        image = remove(image)

    return image, seed

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image Gradio Template")


        with gr.Row():
            model = gr.Dropdown(
                choices=["stabilityai/sdxl-turbo", "CompVis/stable-diffusion-v1-4", "stable-diffusion-v1-5/stable-diffusion-v1-5", "Ramzes"],
                value=model_repo_id,
                label="Model",
                info="Choose which diffusion model to use"
            )

        with gr.Row():
                remove_background = gr.Checkbox(
                    label="Delete background?", value=True
                )
            
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=True):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,  # Replace with defaults that work for your model
                )

                lora_scale = gr.Slider(
                    label="LoRA scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=0.9
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=3,  # Replace with defaults that work for your model
                )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model,
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            lora_scale,
            num_inference_steps,
            remove_background
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()