Spaces:
Sleeping
Sleeping
Upload streamlit_app.py
Browse files- streamlit_app.py +1395 -0
streamlit_app.py
ADDED
|
@@ -0,0 +1,1395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def create_dataset_statistics(buildings_df: pd.DataFrame, weather_df: pd.DataFrame, combinations_df: pd.DataFrame):
|
| 2 |
+
"""Create comprehensive dataset statistics section"""
|
| 3 |
+
st.subheader("π Dataset Statistics & Information")
|
| 4 |
+
|
| 5 |
+
# Dataset description
|
| 6 |
+
st.markdown("""
|
| 7 |
+
<div style="background-color: #1e1e1e; border-radius: 10px; padding: 20px; margin: 20px 0;
|
| 8 |
+
border-left: 4px solid #2196f3; color: white;">
|
| 9 |
+
<h4 style="color: #2196f3; margin-bottom: 15px;">ποΈ About This Dataset</h4>
|
| 10 |
+
<p style="font-size: 1.1em; line-height: 1.6; margin-bottom: 10px;">
|
| 11 |
+
This comprehensive building energy dataset contains energy models for various building types across different climate zones.
|
| 12 |
+
The dataset is designed for energy simulation research, building performance analysis, and climate impact studies.
|
| 13 |
+
</p>
|
| 14 |
+
<p style="font-size: 1.1em; line-height: 1.6; margin-bottom: 10px;">
|
| 15 |
+
Each building model includes detailed geometric properties, construction materials, HVAC systems, and occupancy schedules.
|
| 16 |
+
Multiple variations are generated from base models to study the impact of different parameters on energy performance.
|
| 17 |
+
</p>
|
| 18 |
+
<p style="font-size: 1.1em; line-height: 1.6;">
|
| 19 |
+
Weather data is sourced from global meteorological stations and covers multiple climate zones as defined by ASHRAE standards,
|
| 20 |
+
enabling comprehensive climate-specific energy analysis.
|
| 21 |
+
</p>
|
| 22 |
+
</div>
|
| 23 |
+
""", unsafe_allow_html=True)
|
| 24 |
+
|
| 25 |
+
# Detailed statistics
|
| 26 |
+
col1, col2 = st.columns(2)
|
| 27 |
+
|
| 28 |
+
with col1:
|
| 29 |
+
st.subheader("π’ Building Dataset Details")
|
| 30 |
+
|
| 31 |
+
if not buildings_df.empty:
|
| 32 |
+
# Building type breakdown
|
| 33 |
+
building_types = buildings_df['building_type'].value_counts()
|
| 34 |
+
st.markdown("**Building Types Distribution:**")
|
| 35 |
+
for btype, count in building_types.items():
|
| 36 |
+
percentage = (count / len(buildings_df)) * 100
|
| 37 |
+
st.write(f"β’ **{btype.title()}**: {count} models ({percentage:.1f}%)")
|
| 38 |
+
|
| 39 |
+
st.markdown("---")
|
| 40 |
+
|
| 41 |
+
# Variation breakdown
|
| 42 |
+
variation_types = buildings_df['variation_type'].value_counts()
|
| 43 |
+
st.markdown("**Variation Types:**")
|
| 44 |
+
for var_type, count in variation_types.items():
|
| 45 |
+
percentage = (count / len(buildings_df)) * 100
|
| 46 |
+
st.write(f"β’ **{var_type.title()}**: {count} models ({percentage:.1f}%)")
|
| 47 |
+
|
| 48 |
+
st.markdown("---")
|
| 49 |
+
|
| 50 |
+
# Climate zone coverage
|
| 51 |
+
climate_zones = buildings_df['climate_zone'].value_counts().sort_index()
|
| 52 |
+
st.markdown("**Climate Zone Coverage:**")
|
| 53 |
+
for zone, count in climate_zones.items():
|
| 54 |
+
st.write(f"β’ **Zone {zone}**: {count} buildings")
|
| 55 |
+
else:
|
| 56 |
+
st.warning("No building data available")
|
| 57 |
+
|
| 58 |
+
with col2:
|
| 59 |
+
st.subheader("π Weather Dataset Details")
|
| 60 |
+
|
| 61 |
+
if not weather_df.empty:
|
| 62 |
+
# Geographic coverage
|
| 63 |
+
st.markdown("**Geographic Coverage:**")
|
| 64 |
+
st.write(f"β’ **Total Locations**: {len(weather_df)}")
|
| 65 |
+
st.write(f"β’ **Countries Covered**: {weather_df['country'].nunique()}")
|
| 66 |
+
st.write(f"β’ **Climate Zones**: {weather_df['climate_zone_code'].nunique()}")
|
| 67 |
+
|
| 68 |
+
# Climate zone distribution in weather data
|
| 69 |
+
weather_climate_zones = weather_df['climate_zone_code'].value_counts().sort_index()
|
| 70 |
+
st.markdown("**Weather Locations by Climate Zone:**")
|
| 71 |
+
for zone, count in weather_climate_zones.head(10).items():
|
| 72 |
+
st.write(f"β’ **Zone {zone}**: {count} locations")
|
| 73 |
+
|
| 74 |
+
st.markdown("---")
|
| 75 |
+
|
| 76 |
+
# Top countries by location count
|
| 77 |
+
top_countries = weather_df['country'].value_counts().head(8)
|
| 78 |
+
st.markdown("**Top Countries by Weather Locations:**")
|
| 79 |
+
for country, count in top_countries.items():
|
| 80 |
+
st.write(f"β’ **{country}**: {count} locations")
|
| 81 |
+
|
| 82 |
+
# Data sources if available
|
| 83 |
+
if 'data_source' in weather_df.columns:
|
| 84 |
+
st.markdown("---")
|
| 85 |
+
data_sources = weather_df['data_source'].value_counts()
|
| 86 |
+
st.markdown("**Data Sources:**")
|
| 87 |
+
for source, count in data_sources.items():
|
| 88 |
+
st.write(f"β’ **{source}**: {count} files")
|
| 89 |
+
else:
|
| 90 |
+
st.warning("No weather data available")
|
| 91 |
+
|
| 92 |
+
# Dataset quality metrics
|
| 93 |
+
st.subheader("π― Dataset Quality Metrics")
|
| 94 |
+
|
| 95 |
+
quality_col1, quality_col2, quality_col3, quality_col4 = st.columns(4)
|
| 96 |
+
|
| 97 |
+
with quality_col1:
|
| 98 |
+
completeness = 0
|
| 99 |
+
if not buildings_df.empty:
|
| 100 |
+
total_fields = len(buildings_df.columns)
|
| 101 |
+
missing_fields = buildings_df.isnull().sum().sum()
|
| 102 |
+
total_possible = len(buildings_df) * total_fields
|
| 103 |
+
completeness = ((total_possible - missing_fields) / total_possible) * 100 if total_possible > 0 else 0
|
| 104 |
+
|
| 105 |
+
st.markdown(f"""
|
| 106 |
+
<div style="background-color: #2d2d2d; border-radius: 10px; padding: 15px; text-align: center;
|
| 107 |
+
border: 1px solid #404040; color: white;">
|
| 108 |
+
<div style="font-size: 1.5em; margin-bottom: 5px;">π</div>
|
| 109 |
+
<div style="font-size: 1.8em; font-weight: bold; color: #4caf50;">{completeness:.1f}%</div>
|
| 110 |
+
<div style="font-size: 0.9em; opacity: 0.8;">Data Completeness</div>
|
| 111 |
+
</div>
|
| 112 |
+
""", unsafe_allow_html=True)
|
| 113 |
+
|
| 114 |
+
with quality_col2:
|
| 115 |
+
file_coverage = 0
|
| 116 |
+
if not buildings_df.empty and 'filepath' in buildings_df.columns:
|
| 117 |
+
existing_files = 0
|
| 118 |
+
for _, row in buildings_df.iterrows():
|
| 119 |
+
filepath = Path("data") / row['filepath']
|
| 120 |
+
if filepath.exists():
|
| 121 |
+
existing_files += 1
|
| 122 |
+
file_coverage = (existing_files / len(buildings_df)) * 100
|
| 123 |
+
|
| 124 |
+
st.markdown(f"""
|
| 125 |
+
<div style="background-color: #2d2d2d; border-radius: 10px; padding: 15px; text-align: center;
|
| 126 |
+
border: 1px solid #404040; color: white;">
|
| 127 |
+
<div style="font-size: 1.5em; margin-bottom: 5px;">π</div>
|
| 128 |
+
<div style="font-size: 1.8em; font-weight: bold; color: #2196f3;">{file_coverage:.1f}%</div>
|
| 129 |
+
<div style="font-size: 0.9em; opacity: 0.8;">File Availability</div>
|
| 130 |
+
</div>
|
| 131 |
+
""", unsafe_allow_html=True)
|
| 132 |
+
|
| 133 |
+
with quality_col3:
|
| 134 |
+
diversity_score = 0
|
| 135 |
+
if not buildings_df.empty:
|
| 136 |
+
type_entropy = len(buildings_df['building_type'].unique()) / len(buildings_df) * 100
|
| 137 |
+
climate_entropy = len(buildings_df['climate_zone'].unique()) / len(buildings_df) * 100
|
| 138 |
+
diversity_score = (type_entropy + climate_entropy) / 2
|
| 139 |
+
|
| 140 |
+
st.markdown(f"""
|
| 141 |
+
<div style="background-color: #2d2d2d; border-radius: 10px; padding: 15px; text-align: center;
|
| 142 |
+
border: 1px solid #404040; color: white;">
|
| 143 |
+
<div style="font-size: 1.5em; margin-bottom: 5px;">π¨</div>
|
| 144 |
+
<div style="font-size: 1.8em; font-weight: bold; color: #ff9800;">{diversity_score:.1f}%</div>
|
| 145 |
+
<div style="font-size: 0.9em; opacity: 0.8;">Dataset Diversity</div>
|
| 146 |
+
</div>
|
| 147 |
+
""", unsafe_allow_html=True)
|
| 148 |
+
|
| 149 |
+
with quality_col4:
|
| 150 |
+
simulation_readiness = 0
|
| 151 |
+
if not combinations_df.empty:
|
| 152 |
+
simulation_readiness = 100
|
| 153 |
+
elif not buildings_df.empty and not weather_df.empty:
|
| 154 |
+
simulation_readiness = 75
|
| 155 |
+
elif not buildings_df.empty or not weather_df.empty:
|
| 156 |
+
simulation_readiness = 50
|
| 157 |
+
|
| 158 |
+
st.markdown(f"""
|
| 159 |
+
<div style="background-color: #2d2d2d; border-radius: 10px; padding: 15px; text-align: center;
|
| 160 |
+
border: 1px solid #404040; color: white;">
|
| 161 |
+
<div style="font-size: 1.5em; margin-bottom: 5px;">β‘</div>
|
| 162 |
+
<div style="font-size: 1.8em; font-weight: bold; color: #9c27b0;">{simulation_readiness}%</div>
|
| 163 |
+
<div style="font-size: 0.9em; opacity: 0.8;">Simulation Ready</div>
|
| 164 |
+
</div>
|
| 165 |
+
""", unsafe_allow_html=True)
|
| 166 |
+
|
| 167 |
+
# Usage recommendations
|
| 168 |
+
st.subheader("π‘ Usage Recommendations")
|
| 169 |
+
|
| 170 |
+
recommendation_col1, recommendation_col2 = st.columns(2)
|
| 171 |
+
|
| 172 |
+
with recommendation_col1:
|
| 173 |
+
st.markdown("""
|
| 174 |
+
<div style="background-color: #1a237e; border-radius: 10px; padding: 20px; margin: 10px 0;
|
| 175 |
+
border-left: 4px solid #3f51b5; color: white;">
|
| 176 |
+
<h5 style="color: #64b5f6; margin-bottom: 15px;">π¬ Research Applications</h5>
|
| 177 |
+
<ul style="line-height: 1.8;">
|
| 178 |
+
<li>Building energy performance analysis</li>
|
| 179 |
+
<li>Climate change impact studies</li>
|
| 180 |
+
<li>HVAC system optimization</li>
|
| 181 |
+
<li>Retrofit strategy evaluation</li>
|
| 182 |
+
<li>Code compliance verification</li>
|
| 183 |
+
</ul>
|
| 184 |
+
</div>
|
| 185 |
+
""", unsafe_allow_html=True)
|
| 186 |
+
|
| 187 |
+
with recommendation_col2:
|
| 188 |
+
st.markdown("""
|
| 189 |
+
<div style="background-color: #1b5e20; border-radius: 10px; padding: 20px; margin: 10px 0;
|
| 190 |
+
border-left: 4px solid #4caf50; color: white;">
|
| 191 |
+
<h5 style="color: #81c784; margin-bottom: 15px;">βοΈ Getting Started</h5>
|
| 192 |
+
<ul style="line-height: 1.8;">
|
| 193 |
+
<li>Use <strong>Building Explorer</strong> to browse models</li>
|
| 194 |
+
<li>Check <strong>Weather Data</strong> for climate coverage</li>
|
| 195 |
+
<li>Generate combinations for simulations</li>
|
| 196 |
+
<li>Export filtered datasets for analysis</li>
|
| 197 |
+
<li>Run quality checks before processing</li>
|
| 198 |
+
</ul>
|
| 199 |
+
</div>
|
| 200 |
+
""", unsafe_allow_html=True)# dashboard/streamlit_app.py
|
| 201 |
+
"""
|
| 202 |
+
Building Generator Dashboard - Main Streamlit Application
|
| 203 |
+
Interactive web interface for exploring building energy models and weather data
|
| 204 |
+
"""
|
| 205 |
+
|
| 206 |
+
import streamlit as st
|
| 207 |
+
import pandas as pd
|
| 208 |
+
import plotly.express as px
|
| 209 |
+
import plotly.graph_objects as go
|
| 210 |
+
from plotly.subplots import make_subplots
|
| 211 |
+
import numpy as np
|
| 212 |
+
from pathlib import Path
|
| 213 |
+
import sys
|
| 214 |
+
import json
|
| 215 |
+
from typing import Dict, List, Optional
|
| 216 |
+
import logging
|
| 217 |
+
|
| 218 |
+
# Add the project root to Python path
|
| 219 |
+
PROJECT_ROOT = Path(__file__).parent.parent
|
| 220 |
+
sys.path.insert(0, str(PROJECT_ROOT))
|
| 221 |
+
|
| 222 |
+
from building_gen.core.pipeline import BuildingPipeline
|
| 223 |
+
|
| 224 |
+
# Configure page
|
| 225 |
+
st.set_page_config(
|
| 226 |
+
page_title="Building Generator Dashboard",
|
| 227 |
+
page_icon="ποΈ",
|
| 228 |
+
layout="wide",
|
| 229 |
+
initial_sidebar_state="expanded"
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
# Custom CSS for dark theme styling
|
| 233 |
+
st.markdown("""
|
| 234 |
+
<style>
|
| 235 |
+
.main > div {
|
| 236 |
+
padding-top: 2rem;
|
| 237 |
+
}
|
| 238 |
+
|
| 239 |
+
/* Dark theme metric cards */
|
| 240 |
+
.stMetric {
|
| 241 |
+
background-color: #1e1e1e;
|
| 242 |
+
border: 1px solid #333;
|
| 243 |
+
border-radius: 10px;
|
| 244 |
+
padding: 15px;
|
| 245 |
+
margin: 5px 0;
|
| 246 |
+
color: white;
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
/* Dark theme filter container */
|
| 250 |
+
.filter-container {
|
| 251 |
+
background-color: #2d2d2d;
|
| 252 |
+
border: 1px solid #404040;
|
| 253 |
+
border-radius: 10px;
|
| 254 |
+
padding: 15px;
|
| 255 |
+
margin: 10px 0;
|
| 256 |
+
color: white;
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
/* Dark theme building cards */
|
| 260 |
+
.building-card {
|
| 261 |
+
border: 2px solid #404040;
|
| 262 |
+
border-radius: 10px;
|
| 263 |
+
padding: 15px;
|
| 264 |
+
margin: 10px 0;
|
| 265 |
+
background-color: #1e1e1e;
|
| 266 |
+
color: white;
|
| 267 |
+
}
|
| 268 |
+
|
| 269 |
+
/* Dark theme comparison highlight */
|
| 270 |
+
.comparison-highlight {
|
| 271 |
+
background-color: #1a237e;
|
| 272 |
+
border-left: 4px solid #3f51b5;
|
| 273 |
+
border-radius: 5px;
|
| 274 |
+
padding: 15px;
|
| 275 |
+
margin: 5px 0;
|
| 276 |
+
color: white;
|
| 277 |
+
}
|
| 278 |
+
|
| 279 |
+
/* Plotly chart dark theme */
|
| 280 |
+
.js-plotly-plot {
|
| 281 |
+
background-color: transparent !important;
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
/* Data editor dark theme */
|
| 285 |
+
.stDataFrame {
|
| 286 |
+
background-color: #1e1e1e;
|
| 287 |
+
}
|
| 288 |
+
|
| 289 |
+
/* Sidebar dark theme adjustments */
|
| 290 |
+
.css-1d391kg {
|
| 291 |
+
background-color: #1e1e1e;
|
| 292 |
+
}
|
| 293 |
+
|
| 294 |
+
/* Success/Info/Warning message styling */
|
| 295 |
+
.stSuccess {
|
| 296 |
+
background-color: #1b5e20;
|
| 297 |
+
border: 1px solid #4caf50;
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
.stInfo {
|
| 301 |
+
background-color: #0d47a1;
|
| 302 |
+
border: 1px solid #2196f3;
|
| 303 |
+
}
|
| 304 |
+
|
| 305 |
+
.stWarning {
|
| 306 |
+
background-color: #e65100;
|
| 307 |
+
border: 1px solid #ff9800;
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
.stError {
|
| 311 |
+
background-color: #b71c1c;
|
| 312 |
+
border: 1px solid #f44336;
|
| 313 |
+
}
|
| 314 |
+
</style>
|
| 315 |
+
""", unsafe_allow_html=True)
|
| 316 |
+
|
| 317 |
+
@st.cache_data
|
| 318 |
+
def load_pipeline_data(data_dir: str = "data"):
|
| 319 |
+
"""Load and cache pipeline data"""
|
| 320 |
+
try:
|
| 321 |
+
pipeline = BuildingPipeline(data_dir)
|
| 322 |
+
|
| 323 |
+
# Load building data
|
| 324 |
+
buildings_path = Path(data_dir) / "tables/buildings.csv"
|
| 325 |
+
buildings_df = pd.read_csv(buildings_path) if buildings_path.exists() else pd.DataFrame()
|
| 326 |
+
|
| 327 |
+
# Load weather data
|
| 328 |
+
weather_path = Path(data_dir) / "weather/tables/all_weather.csv"
|
| 329 |
+
weather_df = pd.read_csv(weather_path) if weather_path.exists() else pd.DataFrame()
|
| 330 |
+
|
| 331 |
+
# Load combinations if available
|
| 332 |
+
combinations_path = Path(data_dir) / "tables/building_weather_combinations.csv"
|
| 333 |
+
combinations_df = pd.read_csv(combinations_path) if combinations_path.exists() else pd.DataFrame()
|
| 334 |
+
|
| 335 |
+
return pipeline, buildings_df, weather_df, combinations_df
|
| 336 |
+
except Exception as e:
|
| 337 |
+
st.error(f"Failed to load data: {e}")
|
| 338 |
+
return None, pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
|
| 339 |
+
|
| 340 |
+
def create_building_filters(buildings_df: pd.DataFrame) -> Dict:
|
| 341 |
+
"""Create filter widgets for buildings"""
|
| 342 |
+
st.markdown('<div class="filter-container">', unsafe_allow_html=True)
|
| 343 |
+
st.subheader("π Filter Buildings")
|
| 344 |
+
|
| 345 |
+
col1, col2, col3 = st.columns(3)
|
| 346 |
+
|
| 347 |
+
with col1:
|
| 348 |
+
building_types = st.multiselect(
|
| 349 |
+
"Building Type",
|
| 350 |
+
options=sorted(buildings_df['building_type'].unique()) if not buildings_df.empty else [],
|
| 351 |
+
default=[]
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
climate_zones = st.multiselect(
|
| 355 |
+
"Climate Zone",
|
| 356 |
+
options=sorted(buildings_df['climate_zone'].unique()) if not buildings_df.empty else [],
|
| 357 |
+
default=[]
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
with col2:
|
| 361 |
+
variation_types = st.multiselect(
|
| 362 |
+
"Variation Type",
|
| 363 |
+
options=sorted(buildings_df['variation_type'].unique()) if not buildings_df.empty else [],
|
| 364 |
+
default=[]
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
# Floor area range
|
| 368 |
+
if not buildings_df.empty and 'floor_area' in buildings_df.columns:
|
| 369 |
+
min_area = float(buildings_df['floor_area'].min())
|
| 370 |
+
max_area = float(buildings_df['floor_area'].max())
|
| 371 |
+
area_range = st.slider(
|
| 372 |
+
"Floor Area Range (mΒ²)",
|
| 373 |
+
min_value=min_area,
|
| 374 |
+
max_value=max_area,
|
| 375 |
+
value=(min_area, max_area),
|
| 376 |
+
format="%.0f"
|
| 377 |
+
)
|
| 378 |
+
else:
|
| 379 |
+
area_range = (0, 10000)
|
| 380 |
+
|
| 381 |
+
with col3:
|
| 382 |
+
# Window-to-wall ratio if available
|
| 383 |
+
if not buildings_df.empty and 'window_wall_ratio' in buildings_df.columns:
|
| 384 |
+
min_wwr = float(buildings_df['window_wall_ratio'].min())
|
| 385 |
+
max_wwr = float(buildings_df['window_wall_ratio'].max())
|
| 386 |
+
wwr_range = st.slider(
|
| 387 |
+
"Window-to-Wall Ratio",
|
| 388 |
+
min_value=min_wwr,
|
| 389 |
+
max_value=max_wwr,
|
| 390 |
+
value=(min_wwr, max_wwr),
|
| 391 |
+
format="%.2f"
|
| 392 |
+
)
|
| 393 |
+
else:
|
| 394 |
+
wwr_range = (0.0, 1.0)
|
| 395 |
+
|
| 396 |
+
# Number of zones range
|
| 397 |
+
if not buildings_df.empty and 'num_zones' in buildings_df.columns:
|
| 398 |
+
min_zones = int(buildings_df['num_zones'].min())
|
| 399 |
+
max_zones = int(buildings_df['num_zones'].max())
|
| 400 |
+
zones_range = st.slider(
|
| 401 |
+
"Number of Zones",
|
| 402 |
+
min_value=min_zones,
|
| 403 |
+
max_value=max_zones,
|
| 404 |
+
value=(min_zones, max_zones)
|
| 405 |
+
)
|
| 406 |
+
else:
|
| 407 |
+
zones_range = (1, 100)
|
| 408 |
+
|
| 409 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 410 |
+
|
| 411 |
+
return {
|
| 412 |
+
'building_types': building_types,
|
| 413 |
+
'climate_zones': climate_zones,
|
| 414 |
+
'variation_types': variation_types,
|
| 415 |
+
'area_range': area_range,
|
| 416 |
+
'wwr_range': wwr_range,
|
| 417 |
+
'zones_range': zones_range
|
| 418 |
+
}
|
| 419 |
+
|
| 420 |
+
def apply_building_filters(buildings_df: pd.DataFrame, filters: Dict) -> pd.DataFrame:
|
| 421 |
+
"""Apply filters to buildings dataframe"""
|
| 422 |
+
filtered_df = buildings_df.copy()
|
| 423 |
+
|
| 424 |
+
if filters['building_types']:
|
| 425 |
+
filtered_df = filtered_df[filtered_df['building_type'].isin(filters['building_types'])]
|
| 426 |
+
|
| 427 |
+
if filters['climate_zones']:
|
| 428 |
+
filtered_df = filtered_df[filtered_df['climate_zone'].isin(filters['climate_zones'])]
|
| 429 |
+
|
| 430 |
+
if filters['variation_types']:
|
| 431 |
+
filtered_df = filtered_df[filtered_df['variation_type'].isin(filters['variation_types'])]
|
| 432 |
+
|
| 433 |
+
if 'floor_area' in filtered_df.columns:
|
| 434 |
+
filtered_df = filtered_df[
|
| 435 |
+
(filtered_df['floor_area'] >= filters['area_range'][0]) &
|
| 436 |
+
(filtered_df['floor_area'] <= filters['area_range'][1])
|
| 437 |
+
]
|
| 438 |
+
|
| 439 |
+
if 'window_wall_ratio' in filtered_df.columns:
|
| 440 |
+
filtered_df = filtered_df[
|
| 441 |
+
(filtered_df['window_wall_ratio'] >= filters['wwr_range'][0]) &
|
| 442 |
+
(filtered_df['window_wall_ratio'] <= filters['wwr_range'][1])
|
| 443 |
+
]
|
| 444 |
+
|
| 445 |
+
if 'num_zones' in filtered_df.columns:
|
| 446 |
+
filtered_df = filtered_df[
|
| 447 |
+
(filtered_df['num_zones'] >= filters['zones_range'][0]) &
|
| 448 |
+
(filtered_df['num_zones'] <= filters['zones_range'][1])
|
| 449 |
+
]
|
| 450 |
+
|
| 451 |
+
return filtered_df
|
| 452 |
+
|
| 453 |
+
def create_overview_metrics(buildings_df: pd.DataFrame, weather_df: pd.DataFrame, combinations_df: pd.DataFrame):
|
| 454 |
+
"""Create overview metrics display with consistent sizing and dark theme"""
|
| 455 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 456 |
+
|
| 457 |
+
with col1:
|
| 458 |
+
st.markdown(f"""
|
| 459 |
+
<div style="background-color: #2d2d2d; border-radius: 15px; padding: 25px; margin: 10px 0;
|
| 460 |
+
border: 1px solid #404040; color: white; height: 200px; display: flex;
|
| 461 |
+
flex-direction: column; justify-content: space-between;">
|
| 462 |
+
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
| 463 |
+
<span style="font-size: 2em; margin-right: 15px;">π’</span>
|
| 464 |
+
<span style="font-size: 1.3em; font-weight: bold;">Buildings</span>
|
| 465 |
+
</div>
|
| 466 |
+
<div style="font-size: 3.5em; font-weight: bold; text-align: center; margin: 15px 0;">{len(buildings_df)}</div>
|
| 467 |
+
<div style="font-size: 1em; text-align: center; opacity: 0.8;">
|
| 468 |
+
{len(buildings_df[buildings_df['variation_type'] != 'base']) if not buildings_df.empty else 0} variations
|
| 469 |
+
</div>
|
| 470 |
+
</div>
|
| 471 |
+
""", unsafe_allow_html=True)
|
| 472 |
+
|
| 473 |
+
with col2:
|
| 474 |
+
st.markdown(f"""
|
| 475 |
+
<div style="background-color: #2d2d2d; border-radius: 15px; padding: 25px; margin: 10px 0;
|
| 476 |
+
border: 1px solid #404040; color: white; height: 200px; display: flex;
|
| 477 |
+
flex-direction: column; justify-content: space-between;">
|
| 478 |
+
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
| 479 |
+
<span style="font-size: 2em; margin-right: 15px;">π</span>
|
| 480 |
+
<span style="font-size: 1.3em; font-weight: bold;">Weather Locations</span>
|
| 481 |
+
</div>
|
| 482 |
+
<div style="font-size: 3.5em; font-weight: bold; text-align: center; margin: 15px 0;">{len(weather_df)}</div>
|
| 483 |
+
<div style="font-size: 1em; text-align: center; opacity: 0.8;">
|
| 484 |
+
{weather_df['country'].nunique() if not weather_df.empty else 0} countries
|
| 485 |
+
</div>
|
| 486 |
+
</div>
|
| 487 |
+
""", unsafe_allow_html=True)
|
| 488 |
+
|
| 489 |
+
with col3:
|
| 490 |
+
combinations_status = "Not created" if len(combinations_df) == 0 else "Ready"
|
| 491 |
+
st.markdown(f"""
|
| 492 |
+
<div style="background-color: #2d2d2d; border-radius: 15px; padding: 25px; margin: 10px 0;
|
| 493 |
+
border: 1px solid #404040; color: white; height: 200px; display: flex;
|
| 494 |
+
flex-direction: column; justify-content: space-between;">
|
| 495 |
+
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
| 496 |
+
<span style="font-size: 2em; margin-right: 15px;">π</span>
|
| 497 |
+
<span style="font-size: 1.3em; font-weight: bold;">Combinations</span>
|
| 498 |
+
</div>
|
| 499 |
+
<div style="font-size: 3.5em; font-weight: bold; text-align: center; margin: 15px 0;">{len(combinations_df)}</div>
|
| 500 |
+
<div style="font-size: 1em; text-align: center; opacity: 0.8;">
|
| 501 |
+
{combinations_status}
|
| 502 |
+
</div>
|
| 503 |
+
</div>
|
| 504 |
+
""", unsafe_allow_html=True)
|
| 505 |
+
|
| 506 |
+
with col4:
|
| 507 |
+
climate_zones = buildings_df['climate_zone'].nunique() if not buildings_df.empty else 0
|
| 508 |
+
st.markdown(f"""
|
| 509 |
+
<div style="background-color: #2d2d2d; border-radius: 15px; padding: 25px; margin: 10px 0;
|
| 510 |
+
border: 1px solid #404040; color: white; height: 200px; display: flex;
|
| 511 |
+
flex-direction: column; justify-content: space-between;">
|
| 512 |
+
<div style="display: flex; align-items: center; margin-bottom: 15px;">
|
| 513 |
+
<span style="font-size: 2em; margin-right: 15px;">π‘οΈ</span>
|
| 514 |
+
<span style="font-size: 1.3em; font-weight: bold;">Climate Zones</span>
|
| 515 |
+
</div>
|
| 516 |
+
<div style="font-size: 3.5em; font-weight: bold; text-align: center; margin: 15px 0;">{climate_zones}</div>
|
| 517 |
+
<div style="font-size: 1em; text-align: center; opacity: 0.8;">
|
| 518 |
+
ASHRAE zones
|
| 519 |
+
</div>
|
| 520 |
+
</div>
|
| 521 |
+
""", unsafe_allow_html=True)
|
| 522 |
+
|
| 523 |
+
def create_dark_theme_plotly_layout():
|
| 524 |
+
"""Create consistent dark theme layout for Plotly charts"""
|
| 525 |
+
return {
|
| 526 |
+
'plot_bgcolor': 'rgba(0,0,0,0)',
|
| 527 |
+
'paper_bgcolor': 'rgba(0,0,0,0)',
|
| 528 |
+
'font': {'color': 'white'},
|
| 529 |
+
'xaxis': {
|
| 530 |
+
'gridcolor': '#404040',
|
| 531 |
+
'linecolor': '#404040',
|
| 532 |
+
'tickcolor': '#404040',
|
| 533 |
+
'color': 'white'
|
| 534 |
+
},
|
| 535 |
+
'yaxis': {
|
| 536 |
+
'gridcolor': '#404040',
|
| 537 |
+
'linecolor': '#404040',
|
| 538 |
+
'tickcolor': '#404040',
|
| 539 |
+
'color': 'white'
|
| 540 |
+
}
|
| 541 |
+
}
|
| 542 |
+
|
| 543 |
+
def create_building_characteristics_chart(buildings_df: pd.DataFrame):
|
| 544 |
+
"""Create building characteristics visualization with dark theme"""
|
| 545 |
+
if buildings_df.empty:
|
| 546 |
+
st.warning("No building data available")
|
| 547 |
+
return
|
| 548 |
+
|
| 549 |
+
tab1, tab2, tab3, tab4 = st.tabs(["π Distribution", "πΊοΈ Climate Zones", "ποΈ Types", "π Properties"])
|
| 550 |
+
|
| 551 |
+
with tab1:
|
| 552 |
+
col1, col2 = st.columns(2)
|
| 553 |
+
|
| 554 |
+
with col1:
|
| 555 |
+
# Building type distribution
|
| 556 |
+
type_counts = buildings_df['building_type'].value_counts()
|
| 557 |
+
fig_types = px.pie(
|
| 558 |
+
values=type_counts.values,
|
| 559 |
+
names=type_counts.index,
|
| 560 |
+
title="Building Types Distribution",
|
| 561 |
+
color_discrete_sequence=px.colors.qualitative.Set3
|
| 562 |
+
)
|
| 563 |
+
fig_types.update_layout(**create_dark_theme_plotly_layout(), height=400)
|
| 564 |
+
st.plotly_chart(fig_types, use_container_width=True)
|
| 565 |
+
|
| 566 |
+
with col2:
|
| 567 |
+
# Variation type distribution
|
| 568 |
+
var_counts = buildings_df['variation_type'].value_counts()
|
| 569 |
+
fig_vars = px.bar(
|
| 570 |
+
x=var_counts.index,
|
| 571 |
+
y=var_counts.values,
|
| 572 |
+
title="Variation Types",
|
| 573 |
+
color=var_counts.index,
|
| 574 |
+
color_discrete_sequence=px.colors.qualitative.Pastel
|
| 575 |
+
)
|
| 576 |
+
fig_vars.update_layout(**create_dark_theme_plotly_layout(), height=400, showlegend=False)
|
| 577 |
+
st.plotly_chart(fig_vars, use_container_width=True)
|
| 578 |
+
|
| 579 |
+
with tab2:
|
| 580 |
+
# Climate zone analysis
|
| 581 |
+
climate_counts = buildings_df['climate_zone'].value_counts()
|
| 582 |
+
fig_climate = px.bar(
|
| 583 |
+
x=climate_counts.index,
|
| 584 |
+
y=climate_counts.values,
|
| 585 |
+
title="Buildings by Climate Zone",
|
| 586 |
+
color=climate_counts.values,
|
| 587 |
+
color_continuous_scale='viridis'
|
| 588 |
+
)
|
| 589 |
+
fig_climate.update_layout(**create_dark_theme_plotly_layout(), height=400)
|
| 590 |
+
st.plotly_chart(fig_climate, use_container_width=True)
|
| 591 |
+
|
| 592 |
+
# Climate zone descriptions
|
| 593 |
+
climate_descriptions = {
|
| 594 |
+
'1A': 'Very Hot - Humid', '1B': 'Very Hot - Dry',
|
| 595 |
+
'2A': 'Hot - Humid', '2B': 'Hot - Dry',
|
| 596 |
+
'3A': 'Warm - Humid', '3B': 'Warm - Dry', '3C': 'Warm - Marine',
|
| 597 |
+
'4A': 'Mixed - Humid', '4B': 'Mixed - Dry', '4C': 'Mixed - Marine',
|
| 598 |
+
'5A': 'Cool - Humid', '5B': 'Cool - Dry', '5C': 'Cool - Marine',
|
| 599 |
+
'6A': 'Cold - Humid', '6B': 'Cold - Dry',
|
| 600 |
+
'7': 'Very Cold', '8': 'Subarctic'
|
| 601 |
+
}
|
| 602 |
+
|
| 603 |
+
st.subheader("Climate Zone Descriptions")
|
| 604 |
+
for zone in sorted(buildings_df['climate_zone'].unique()):
|
| 605 |
+
if zone in climate_descriptions:
|
| 606 |
+
st.info(f"**{zone}**: {climate_descriptions[zone]}")
|
| 607 |
+
|
| 608 |
+
with tab3:
|
| 609 |
+
# Building type details
|
| 610 |
+
st.subheader("Building Type Analysis")
|
| 611 |
+
|
| 612 |
+
# Check which columns exist before grouping
|
| 613 |
+
agg_dict = {'floor_area': ['count']}
|
| 614 |
+
if 'floor_area' in buildings_df.columns:
|
| 615 |
+
agg_dict['floor_area'] = ['count', 'mean', 'std']
|
| 616 |
+
if 'num_zones' in buildings_df.columns:
|
| 617 |
+
agg_dict['num_zones'] = ['mean', 'std']
|
| 618 |
+
if 'window_wall_ratio' in buildings_df.columns:
|
| 619 |
+
agg_dict['window_wall_ratio'] = ['mean', 'std']
|
| 620 |
+
|
| 621 |
+
type_summary = buildings_df.groupby('building_type').agg(agg_dict).round(2)
|
| 622 |
+
st.dataframe(type_summary, use_container_width=True)
|
| 623 |
+
|
| 624 |
+
with tab4:
|
| 625 |
+
# Property correlations
|
| 626 |
+
numeric_cols = []
|
| 627 |
+
for col in ['floor_area', 'num_zones', 'window_wall_ratio']:
|
| 628 |
+
if col in buildings_df.columns:
|
| 629 |
+
numeric_cols.append(col)
|
| 630 |
+
|
| 631 |
+
if len(numeric_cols) >= 2:
|
| 632 |
+
corr_matrix = buildings_df[numeric_cols].corr()
|
| 633 |
+
|
| 634 |
+
fig_corr = px.imshow(
|
| 635 |
+
corr_matrix,
|
| 636 |
+
color_continuous_scale='RdBu',
|
| 637 |
+
aspect='auto',
|
| 638 |
+
title='Building Property Correlations'
|
| 639 |
+
)
|
| 640 |
+
fig_corr.update_layout(**create_dark_theme_plotly_layout())
|
| 641 |
+
st.plotly_chart(fig_corr, use_container_width=True)
|
| 642 |
+
|
| 643 |
+
# Scatter plots
|
| 644 |
+
if len(numeric_cols) >= 2:
|
| 645 |
+
col1, col2 = st.columns(2)
|
| 646 |
+
with col1:
|
| 647 |
+
if 'floor_area' in numeric_cols and 'num_zones' in numeric_cols:
|
| 648 |
+
fig_scatter1 = px.scatter(
|
| 649 |
+
buildings_df,
|
| 650 |
+
x='floor_area',
|
| 651 |
+
y='num_zones',
|
| 652 |
+
color='building_type',
|
| 653 |
+
title='Floor Area vs Number of Zones',
|
| 654 |
+
hover_data=['name']
|
| 655 |
+
)
|
| 656 |
+
fig_scatter1.update_layout(**create_dark_theme_plotly_layout())
|
| 657 |
+
st.plotly_chart(fig_scatter1, use_container_width=True)
|
| 658 |
+
|
| 659 |
+
with col2:
|
| 660 |
+
if 'window_wall_ratio' in numeric_cols and 'floor_area' in numeric_cols:
|
| 661 |
+
fig_scatter2 = px.scatter(
|
| 662 |
+
buildings_df,
|
| 663 |
+
x='window_wall_ratio',
|
| 664 |
+
y='floor_area',
|
| 665 |
+
color='building_type',
|
| 666 |
+
title='Window-Wall Ratio vs Floor Area',
|
| 667 |
+
hover_data=['name']
|
| 668 |
+
)
|
| 669 |
+
fig_scatter2.update_layout(**create_dark_theme_plotly_layout())
|
| 670 |
+
st.plotly_chart(fig_scatter2, use_container_width=True)
|
| 671 |
+
|
| 672 |
+
def display_buildings_table(buildings_df: pd.DataFrame):
|
| 673 |
+
"""Display interactive buildings table"""
|
| 674 |
+
st.subheader("π Buildings Database")
|
| 675 |
+
|
| 676 |
+
if buildings_df.empty:
|
| 677 |
+
st.warning("No buildings found matching the current filters.")
|
| 678 |
+
return
|
| 679 |
+
|
| 680 |
+
# Prepare column config based on available columns
|
| 681 |
+
column_config = {
|
| 682 |
+
"id": st.column_config.NumberColumn("ID", width="small"),
|
| 683 |
+
"name": st.column_config.TextColumn("Building Name", width="large"),
|
| 684 |
+
"building_type": st.column_config.TextColumn("Type", width="medium"),
|
| 685 |
+
"climate_zone": st.column_config.TextColumn("Climate", width="small"),
|
| 686 |
+
"variation_type": st.column_config.TextColumn("Variation", width="medium"),
|
| 687 |
+
"filepath": st.column_config.TextColumn("File Path", width="large")
|
| 688 |
+
}
|
| 689 |
+
|
| 690 |
+
# Add optional columns if they exist
|
| 691 |
+
if 'floor_area' in buildings_df.columns:
|
| 692 |
+
column_config["floor_area"] = st.column_config.NumberColumn("Floor Area (mΒ²)", format="%.0f", width="medium")
|
| 693 |
+
if 'num_zones' in buildings_df.columns:
|
| 694 |
+
column_config["num_zones"] = st.column_config.NumberColumn("Zones", width="small")
|
| 695 |
+
if 'window_wall_ratio' in buildings_df.columns:
|
| 696 |
+
column_config["window_wall_ratio"] = st.column_config.NumberColumn("WWR", format="%.2f", width="small")
|
| 697 |
+
if 'created_date' in buildings_df.columns:
|
| 698 |
+
column_config["created_date"] = st.column_config.DatetimeColumn("Created", width="medium")
|
| 699 |
+
|
| 700 |
+
# Display the table
|
| 701 |
+
selected_buildings = st.data_editor(
|
| 702 |
+
buildings_df,
|
| 703 |
+
use_container_width=True,
|
| 704 |
+
hide_index=True,
|
| 705 |
+
column_config=column_config,
|
| 706 |
+
disabled=list(buildings_df.columns) # Make all columns read-only
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
# Export functionality
|
| 710 |
+
col1, col2, col3 = st.columns([1, 1, 2])
|
| 711 |
+
with col1:
|
| 712 |
+
if st.button("π₯ Export to CSV"):
|
| 713 |
+
csv = buildings_df.to_csv(index=False)
|
| 714 |
+
st.download_button(
|
| 715 |
+
label="Download CSV",
|
| 716 |
+
data=csv,
|
| 717 |
+
file_name=f"buildings_filtered_{pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
| 718 |
+
mime="text/csv"
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
def load_building_epjson(filepath: str, data_dir: str = "data") -> Optional[Dict]:
|
| 722 |
+
"""Load building epJSON file"""
|
| 723 |
+
try:
|
| 724 |
+
full_path = Path(data_dir) / filepath
|
| 725 |
+
if full_path.exists():
|
| 726 |
+
with open(full_path, 'r') as f:
|
| 727 |
+
return json.load(f)
|
| 728 |
+
else:
|
| 729 |
+
st.error(f"Building file not found: {full_path}")
|
| 730 |
+
return None
|
| 731 |
+
except Exception as e:
|
| 732 |
+
st.error(f"Error loading building file: {e}")
|
| 733 |
+
return None
|
| 734 |
+
|
| 735 |
+
def analyze_building_epjson(epjson_data: Dict) -> Dict:
|
| 736 |
+
"""Analyze epJSON building data and extract key metrics"""
|
| 737 |
+
analysis = {
|
| 738 |
+
'zones': 0,
|
| 739 |
+
'surfaces': 0,
|
| 740 |
+
'windows': 0,
|
| 741 |
+
'hvac_systems': 0,
|
| 742 |
+
'schedules': 0,
|
| 743 |
+
'materials': 0,
|
| 744 |
+
'constructions': 0,
|
| 745 |
+
'has_meters': False,
|
| 746 |
+
'has_setpoints': False,
|
| 747 |
+
'timestep': None
|
| 748 |
+
}
|
| 749 |
+
|
| 750 |
+
# Count building components
|
| 751 |
+
if 'Zone' in epjson_data:
|
| 752 |
+
analysis['zones'] = len(epjson_data['Zone'])
|
| 753 |
+
|
| 754 |
+
if 'BuildingSurface:Detailed' in epjson_data:
|
| 755 |
+
analysis['surfaces'] = len(epjson_data['BuildingSurface:Detailed'])
|
| 756 |
+
|
| 757 |
+
if 'FenestrationSurface:Detailed' in epjson_data:
|
| 758 |
+
analysis['windows'] = len(epjson_data['FenestrationSurface:Detailed'])
|
| 759 |
+
|
| 760 |
+
if 'Schedule:Compact' in epjson_data:
|
| 761 |
+
analysis['schedules'] = len(epjson_data['Schedule:Compact'])
|
| 762 |
+
|
| 763 |
+
if 'Material' in epjson_data:
|
| 764 |
+
analysis['materials'] = len(epjson_data['Material'])
|
| 765 |
+
|
| 766 |
+
if 'Construction' in epjson_data:
|
| 767 |
+
analysis['constructions'] = len(epjson_data['Construction'])
|
| 768 |
+
|
| 769 |
+
# Check for HVAC systems
|
| 770 |
+
hvac_objects = ['AirLoopHVAC', 'PlantLoop', 'ZoneHVAC:IdealLoadsAirSystem']
|
| 771 |
+
analysis['hvac_systems'] = sum(len(epjson_data.get(obj, {})) for obj in hvac_objects)
|
| 772 |
+
|
| 773 |
+
# Check for meters and outputs
|
| 774 |
+
analysis['has_meters'] = 'Output:Meter' in epjson_data
|
| 775 |
+
analysis['has_setpoints'] = any('Setpoint' in key for key in epjson_data.keys())
|
| 776 |
+
|
| 777 |
+
# Get timestep
|
| 778 |
+
if 'Timestep' in epjson_data:
|
| 779 |
+
timestep_obj = list(epjson_data['Timestep'].values())[0]
|
| 780 |
+
analysis['timestep'] = timestep_obj.get('number_of_timesteps_per_hour', 'Unknown')
|
| 781 |
+
|
| 782 |
+
return analysis
|
| 783 |
+
|
| 784 |
+
def create_mock_energy_profile(building_name: str):
|
| 785 |
+
"""Create mock energy profile for demonstration with dark theme"""
|
| 786 |
+
st.subheader("β‘ Energy Profile (Demo)")
|
| 787 |
+
st.info("π Note: This is demonstration data. Connect to actual EnergyPlus simulation results for real data.")
|
| 788 |
+
|
| 789 |
+
# Mock hourly load profile
|
| 790 |
+
hours = list(range(24))
|
| 791 |
+
base_load = 100
|
| 792 |
+
peak_factor = np.sin(np.array(hours) * np.pi / 12)
|
| 793 |
+
mock_load = base_load + 50 * peak_factor + np.random.normal(0, 10, 24)
|
| 794 |
+
mock_load = np.maximum(mock_load, 20) # Minimum load
|
| 795 |
+
|
| 796 |
+
# Mock monthly energy
|
| 797 |
+
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
|
| 798 |
+
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
| 799 |
+
heating_load = [150, 120, 80, 40, 10, 0, 0, 0, 20, 60, 100, 140]
|
| 800 |
+
cooling_load = [0, 0, 10, 30, 60, 100, 120, 110, 70, 30, 5, 0]
|
| 801 |
+
|
| 802 |
+
col1, col2 = st.columns(2)
|
| 803 |
+
|
| 804 |
+
with col1:
|
| 805 |
+
# Hourly profile
|
| 806 |
+
fig_hourly = px.line(
|
| 807 |
+
x=hours,
|
| 808 |
+
y=mock_load,
|
| 809 |
+
title="Typical Daily Load Profile",
|
| 810 |
+
labels={'x': 'Hour of Day', 'y': 'Power (kW)'}
|
| 811 |
+
)
|
| 812 |
+
fig_hourly.update_traces(line_color='#00d4ff')
|
| 813 |
+
fig_hourly.update_layout(**create_dark_theme_plotly_layout())
|
| 814 |
+
st.plotly_chart(fig_hourly, use_container_width=True)
|
| 815 |
+
|
| 816 |
+
with col2:
|
| 817 |
+
# Monthly profile
|
| 818 |
+
fig_monthly = go.Figure()
|
| 819 |
+
fig_monthly.add_trace(go.Bar(x=months, y=heating_load, name='Heating', marker_color='#ff6b6b'))
|
| 820 |
+
fig_monthly.add_trace(go.Bar(x=months, y=cooling_load, name='Cooling', marker_color='#4ecdc4'))
|
| 821 |
+
fig_monthly.update_layout(
|
| 822 |
+
**create_dark_theme_plotly_layout(),
|
| 823 |
+
title="Monthly Energy Consumption",
|
| 824 |
+
xaxis_title="Month",
|
| 825 |
+
yaxis_title="Energy (kWh/mΒ²)",
|
| 826 |
+
barmode='stack'
|
| 827 |
+
)
|
| 828 |
+
st.plotly_chart(fig_monthly, use_container_width=True)
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
|
| 832 |
+
def main():
|
| 833 |
+
"""Main Streamlit application"""
|
| 834 |
+
st.title("ποΈ Building Generator Dashboard")
|
| 835 |
+
st.markdown("Interactive exploration of building energy models and weather data")
|
| 836 |
+
|
| 837 |
+
# Load data
|
| 838 |
+
with st.spinner("Loading building and weather data..."):
|
| 839 |
+
pipeline, buildings_df, weather_df, combinations_df = load_pipeline_data()
|
| 840 |
+
|
| 841 |
+
if pipeline is None:
|
| 842 |
+
st.error("Failed to initialize application. Please check your data directory.")
|
| 843 |
+
st.info("Make sure you have run: `python scripts/main.py --create-table` and `python scripts/main.py --create-weather-table`")
|
| 844 |
+
return
|
| 845 |
+
|
| 846 |
+
# Sidebar for navigation
|
| 847 |
+
st.sidebar.title("ποΈ Navigation")
|
| 848 |
+
|
| 849 |
+
# Initialize session state for page navigation
|
| 850 |
+
if 'current_page' not in st.session_state:
|
| 851 |
+
st.session_state.current_page = "π Overview"
|
| 852 |
+
|
| 853 |
+
# Use session state to control the selectbox
|
| 854 |
+
page_options = ["π Overview", "π’ Building Explorer", "π Weather Data", "βοΈ Compare Buildings", "π Analysis & Reports"]
|
| 855 |
+
current_index = page_options.index(st.session_state.current_page) if st.session_state.current_page in page_options else 0
|
| 856 |
+
|
| 857 |
+
page = st.sidebar.selectbox(
|
| 858 |
+
"Choose a page:",
|
| 859 |
+
page_options,
|
| 860 |
+
index=current_index,
|
| 861 |
+
key="page_selector"
|
| 862 |
+
)
|
| 863 |
+
|
| 864 |
+
# Update session state when selectbox changes
|
| 865 |
+
if page != st.session_state.current_page:
|
| 866 |
+
st.session_state.current_page = page
|
| 867 |
+
|
| 868 |
+
# Use the current page from session state
|
| 869 |
+
current_page = st.session_state.current_page
|
| 870 |
+
|
| 871 |
+
if current_page == "π Overview":
|
| 872 |
+
st.header("System Overview")
|
| 873 |
+
|
| 874 |
+
# System overview
|
| 875 |
+
create_overview_metrics(buildings_df, weather_df, combinations_df)
|
| 876 |
+
|
| 877 |
+
elif current_page == "π’ Building Explorer":
|
| 878 |
+
st.header("Building Explorer")
|
| 879 |
+
|
| 880 |
+
if buildings_df.empty:
|
| 881 |
+
st.warning("No building data available. Run `python scripts/main.py --create-table` first.")
|
| 882 |
+
return
|
| 883 |
+
|
| 884 |
+
# Filters
|
| 885 |
+
filters = create_building_filters(buildings_df)
|
| 886 |
+
|
| 887 |
+
# Apply filters
|
| 888 |
+
filtered_buildings = apply_building_filters(buildings_df, filters)
|
| 889 |
+
|
| 890 |
+
st.subheader(f"π Found {len(filtered_buildings)} buildings")
|
| 891 |
+
|
| 892 |
+
# Visualizations
|
| 893 |
+
if not filtered_buildings.empty:
|
| 894 |
+
create_building_characteristics_chart(filtered_buildings)
|
| 895 |
+
|
| 896 |
+
# Buildings table
|
| 897 |
+
display_buildings_table(filtered_buildings)
|
| 898 |
+
|
| 899 |
+
# Building details expander
|
| 900 |
+
if not filtered_buildings.empty:
|
| 901 |
+
st.subheader("π Building Details")
|
| 902 |
+
selected_building = st.selectbox(
|
| 903 |
+
"Select a building to analyze:",
|
| 904 |
+
options=filtered_buildings['name'].tolist(),
|
| 905 |
+
index=0
|
| 906 |
+
)
|
| 907 |
+
|
| 908 |
+
if selected_building:
|
| 909 |
+
building_info = filtered_buildings[filtered_buildings['name'] == selected_building].iloc[0]
|
| 910 |
+
|
| 911 |
+
col1, col2 = st.columns([1, 2])
|
| 912 |
+
|
| 913 |
+
with col1:
|
| 914 |
+
st.markdown('<div class="building-card">', unsafe_allow_html=True)
|
| 915 |
+
st.subheader(f"π {building_info['name']}")
|
| 916 |
+
st.write(f"**Type**: {building_info['building_type']}")
|
| 917 |
+
st.write(f"**Climate Zone**: {building_info['climate_zone']}")
|
| 918 |
+
st.write(f"**Variation**: {building_info['variation_type']}")
|
| 919 |
+
|
| 920 |
+
# Add optional fields if they exist
|
| 921 |
+
if 'floor_area' in building_info and pd.notna(building_info['floor_area']):
|
| 922 |
+
st.write(f"**Floor Area**: {building_info['floor_area']:.0f} mΒ²")
|
| 923 |
+
if 'num_zones' in building_info and pd.notna(building_info['num_zones']):
|
| 924 |
+
st.write(f"**Zones**: {building_info['num_zones']}")
|
| 925 |
+
if 'window_wall_ratio' in building_info and pd.notna(building_info['window_wall_ratio']):
|
| 926 |
+
st.write(f"**WWR**: {building_info['window_wall_ratio']:.2%}")
|
| 927 |
+
|
| 928 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 929 |
+
|
| 930 |
+
with col2:
|
| 931 |
+
# Load and analyze building file
|
| 932 |
+
epjson_data = load_building_epjson(building_info['filepath'])
|
| 933 |
+
|
| 934 |
+
if epjson_data:
|
| 935 |
+
analysis = analyze_building_epjson(epjson_data)
|
| 936 |
+
|
| 937 |
+
st.subheader("π§ Building Analysis")
|
| 938 |
+
|
| 939 |
+
# Create metrics display
|
| 940 |
+
metric_col1, metric_col2, metric_col3 = st.columns(3)
|
| 941 |
+
|
| 942 |
+
with metric_col1:
|
| 943 |
+
st.metric("Zones", analysis['zones'])
|
| 944 |
+
st.metric("Surfaces", analysis['surfaces'])
|
| 945 |
+
|
| 946 |
+
with metric_col2:
|
| 947 |
+
st.metric("Windows", analysis['windows'])
|
| 948 |
+
st.metric("HVAC Systems", analysis['hvac_systems'])
|
| 949 |
+
|
| 950 |
+
with metric_col3:
|
| 951 |
+
st.metric("Schedules", analysis['schedules'])
|
| 952 |
+
st.metric("Materials", analysis['materials'])
|
| 953 |
+
|
| 954 |
+
# Status indicators
|
| 955 |
+
st.subheader("β‘ Processing Status")
|
| 956 |
+
status_col1, status_col2, status_col3 = st.columns(3)
|
| 957 |
+
|
| 958 |
+
with status_col1:
|
| 959 |
+
meter_status = "β
Yes" if analysis['has_meters'] else "β No"
|
| 960 |
+
st.metric("Has Meters", meter_status)
|
| 961 |
+
|
| 962 |
+
with status_col2:
|
| 963 |
+
setpoint_status = "β
Yes" if analysis['has_setpoints'] else "β No"
|
| 964 |
+
st.metric("Has Setpoints", setpoint_status)
|
| 965 |
+
|
| 966 |
+
with status_col3:
|
| 967 |
+
timestep_value = analysis['timestep'] or "Not set"
|
| 968 |
+
st.metric("Timesteps/Hour", timestep_value)
|
| 969 |
+
|
| 970 |
+
# Mock energy profile
|
| 971 |
+
create_mock_energy_profile(selected_building)
|
| 972 |
+
|
| 973 |
+
elif current_page == "π Weather Data":
|
| 974 |
+
st.header("Weather Data Explorer")
|
| 975 |
+
|
| 976 |
+
if weather_df.empty:
|
| 977 |
+
st.warning("No weather data available. Run `python scripts/main.py --create-weather-table` first.")
|
| 978 |
+
return
|
| 979 |
+
|
| 980 |
+
# Weather filters
|
| 981 |
+
st.subheader("π‘οΈ Filter Weather Locations")
|
| 982 |
+
|
| 983 |
+
col1, col2, col3 = st.columns(3)
|
| 984 |
+
|
| 985 |
+
with col1:
|
| 986 |
+
countries = st.multiselect(
|
| 987 |
+
"Countries",
|
| 988 |
+
options=sorted(weather_df['country'].unique()),
|
| 989 |
+
default=[]
|
| 990 |
+
)
|
| 991 |
+
|
| 992 |
+
climate_zones_weather = st.multiselect(
|
| 993 |
+
"Climate Zones",
|
| 994 |
+
options=sorted(weather_df['climate_zone_code'].unique()),
|
| 995 |
+
default=[]
|
| 996 |
+
)
|
| 997 |
+
|
| 998 |
+
with col2:
|
| 999 |
+
if 'data_source' in weather_df.columns:
|
| 1000 |
+
data_sources = st.multiselect(
|
| 1001 |
+
"Data Sources",
|
| 1002 |
+
options=weather_df['data_source'].unique(),
|
| 1003 |
+
default=[]
|
| 1004 |
+
)
|
| 1005 |
+
else:
|
| 1006 |
+
data_sources = []
|
| 1007 |
+
|
| 1008 |
+
lat_range = st.slider(
|
| 1009 |
+
"Latitude Range",
|
| 1010 |
+
min_value=float(weather_df['latitude'].min()),
|
| 1011 |
+
max_value=float(weather_df['latitude'].max()),
|
| 1012 |
+
value=(float(weather_df['latitude'].min()), float(weather_df['latitude'].max()))
|
| 1013 |
+
)
|
| 1014 |
+
|
| 1015 |
+
with col3:
|
| 1016 |
+
lon_range = st.slider(
|
| 1017 |
+
"Longitude Range",
|
| 1018 |
+
min_value=float(weather_df['longitude'].min()),
|
| 1019 |
+
max_value=float(weather_df['longitude'].max()),
|
| 1020 |
+
value=(float(weather_df['longitude'].min()), float(weather_df['longitude'].max()))
|
| 1021 |
+
)
|
| 1022 |
+
|
| 1023 |
+
# Apply weather filters
|
| 1024 |
+
filtered_weather = weather_df.copy()
|
| 1025 |
+
|
| 1026 |
+
if countries:
|
| 1027 |
+
filtered_weather = filtered_weather[filtered_weather['country'].isin(countries)]
|
| 1028 |
+
if climate_zones_weather:
|
| 1029 |
+
filtered_weather = filtered_weather[filtered_weather['climate_zone_code'].isin(climate_zones_weather)]
|
| 1030 |
+
if data_sources:
|
| 1031 |
+
filtered_weather = filtered_weather[filtered_weather['data_source'].isin(data_sources)]
|
| 1032 |
+
|
| 1033 |
+
filtered_weather = filtered_weather[
|
| 1034 |
+
(filtered_weather['latitude'] >= lat_range[0]) &
|
| 1035 |
+
(filtered_weather['latitude'] <= lat_range[1]) &
|
| 1036 |
+
(filtered_weather['longitude'] >= lon_range[0]) &
|
| 1037 |
+
(filtered_weather['longitude'] <= lon_range[1])
|
| 1038 |
+
]
|
| 1039 |
+
|
| 1040 |
+
st.subheader(f"π Found {len(filtered_weather)} weather locations")
|
| 1041 |
+
|
| 1042 |
+
# Weather visualizations
|
| 1043 |
+
tab1, tab2, tab3 = st.tabs(["πΊοΈ Map", "π Distribution", "π Table"])
|
| 1044 |
+
|
| 1045 |
+
with tab1:
|
| 1046 |
+
# World map of weather locations
|
| 1047 |
+
fig_map = px.scatter_mapbox(
|
| 1048 |
+
filtered_weather,
|
| 1049 |
+
lat='latitude',
|
| 1050 |
+
lon='longitude',
|
| 1051 |
+
color='climate_zone_code',
|
| 1052 |
+
hover_data=['place', 'country'],
|
| 1053 |
+
mapbox_style='carto-darkmatter', # Dark theme map
|
| 1054 |
+
zoom=1,
|
| 1055 |
+
title='Weather Locations Worldwide'
|
| 1056 |
+
)
|
| 1057 |
+
fig_map.update_layout(**create_dark_theme_plotly_layout(), height=600)
|
| 1058 |
+
st.plotly_chart(fig_map, use_container_width=True)
|
| 1059 |
+
|
| 1060 |
+
with tab2:
|
| 1061 |
+
col1, col2 = st.columns(2)
|
| 1062 |
+
|
| 1063 |
+
with col1:
|
| 1064 |
+
# Country distribution
|
| 1065 |
+
country_counts = filtered_weather['country'].value_counts().head(15)
|
| 1066 |
+
fig_countries = px.bar(
|
| 1067 |
+
x=country_counts.values,
|
| 1068 |
+
y=country_counts.index,
|
| 1069 |
+
orientation='h',
|
| 1070 |
+
title='Top 15 Countries by Weather Locations',
|
| 1071 |
+
color=country_counts.values,
|
| 1072 |
+
color_continuous_scale='viridis'
|
| 1073 |
+
)
|
| 1074 |
+
fig_countries.update_layout(**create_dark_theme_plotly_layout(), height=500)
|
| 1075 |
+
st.plotly_chart(fig_countries, use_container_width=True)
|
| 1076 |
+
|
| 1077 |
+
with col2:
|
| 1078 |
+
# Climate zone distribution
|
| 1079 |
+
climate_counts = filtered_weather['climate_zone_code'].value_counts()
|
| 1080 |
+
fig_climate = px.pie(
|
| 1081 |
+
values=climate_counts.values,
|
| 1082 |
+
names=climate_counts.index,
|
| 1083 |
+
title='Climate Zone Distribution',
|
| 1084 |
+
color_discrete_sequence=px.colors.qualitative.Set3
|
| 1085 |
+
)
|
| 1086 |
+
fig_climate.update_layout(**create_dark_theme_plotly_layout(), height=500)
|
| 1087 |
+
st.plotly_chart(fig_climate, use_container_width=True)
|
| 1088 |
+
|
| 1089 |
+
with tab3:
|
| 1090 |
+
# Weather locations table
|
| 1091 |
+
st.dataframe(
|
| 1092 |
+
filtered_weather,
|
| 1093 |
+
use_container_width=True,
|
| 1094 |
+
hide_index=True,
|
| 1095 |
+
column_config={
|
| 1096 |
+
"id": st.column_config.NumberColumn("ID", width="small"),
|
| 1097 |
+
"place": st.column_config.TextColumn("Location", width="large"),
|
| 1098 |
+
"country": st.column_config.TextColumn("Country", width="small"),
|
| 1099 |
+
"climate_zone_code": st.column_config.TextColumn("Climate", width="small"),
|
| 1100 |
+
"latitude": st.column_config.NumberColumn("Latitude", format="%.2f", width="medium"),
|
| 1101 |
+
"longitude": st.column_config.NumberColumn("Longitude", format="%.2f", width="medium"),
|
| 1102 |
+
"elevation": st.column_config.NumberColumn("Elevation (m)", width="medium") if 'elevation' in filtered_weather.columns else None,
|
| 1103 |
+
"data_source": st.column_config.TextColumn("Source", width="small") if 'data_source' in filtered_weather.columns else None
|
| 1104 |
+
}
|
| 1105 |
+
)
|
| 1106 |
+
|
| 1107 |
+
elif current_page == "βοΈ Compare Buildings":
|
| 1108 |
+
st.header("Building Comparison Tool")
|
| 1109 |
+
|
| 1110 |
+
if buildings_df.empty:
|
| 1111 |
+
st.warning("No building data available for comparison.")
|
| 1112 |
+
return
|
| 1113 |
+
|
| 1114 |
+
st.subheader("Select Buildings to Compare")
|
| 1115 |
+
|
| 1116 |
+
# Building selection for comparison
|
| 1117 |
+
col1, col2 = st.columns(2)
|
| 1118 |
+
|
| 1119 |
+
with col1:
|
| 1120 |
+
building1 = st.selectbox(
|
| 1121 |
+
"Building 1:",
|
| 1122 |
+
options=buildings_df['name'].tolist(),
|
| 1123 |
+
key="building1"
|
| 1124 |
+
)
|
| 1125 |
+
|
| 1126 |
+
with col2:
|
| 1127 |
+
building2 = st.selectbox(
|
| 1128 |
+
"Building 2:",
|
| 1129 |
+
options=buildings_df['name'].tolist(),
|
| 1130 |
+
key="building2"
|
| 1131 |
+
)
|
| 1132 |
+
|
| 1133 |
+
if building1 and building2 and building1 != building2:
|
| 1134 |
+
# Get building data
|
| 1135 |
+
building1_data = buildings_df[buildings_df['name'] == building1].iloc[0]
|
| 1136 |
+
building2_data = buildings_df[buildings_df['name'] == building2].iloc[0]
|
| 1137 |
+
|
| 1138 |
+
# Comparison display
|
| 1139 |
+
st.subheader("π Building Comparison")
|
| 1140 |
+
|
| 1141 |
+
col1, col2 = st.columns(2)
|
| 1142 |
+
|
| 1143 |
+
with col1:
|
| 1144 |
+
st.markdown('<div class="comparison-highlight">', unsafe_allow_html=True)
|
| 1145 |
+
st.subheader(f"π’ {building1}")
|
| 1146 |
+
st.write(f"**Type**: {building1_data['building_type']}")
|
| 1147 |
+
st.write(f"**Climate Zone**: {building1_data['climate_zone']}")
|
| 1148 |
+
st.write(f"**Variation**: {building1_data['variation_type']}")
|
| 1149 |
+
|
| 1150 |
+
# Add optional fields if they exist
|
| 1151 |
+
for field, label in [('floor_area', 'Floor Area'), ('num_zones', 'Zones'), ('window_wall_ratio', 'WWR')]:
|
| 1152 |
+
if field in building1_data and pd.notna(building1_data[field]):
|
| 1153 |
+
if field == 'floor_area':
|
| 1154 |
+
st.write(f"**{label}**: {building1_data[field]:.0f} mΒ²")
|
| 1155 |
+
elif field == 'window_wall_ratio':
|
| 1156 |
+
st.write(f"**{label}**: {building1_data[field]:.2%}")
|
| 1157 |
+
else:
|
| 1158 |
+
st.write(f"**{label}**: {building1_data[field]}")
|
| 1159 |
+
|
| 1160 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 1161 |
+
|
| 1162 |
+
with col2:
|
| 1163 |
+
st.markdown('<div class="comparison-highlight">', unsafe_allow_html=True)
|
| 1164 |
+
st.subheader(f"π’ {building2}")
|
| 1165 |
+
st.write(f"**Type**: {building2_data['building_type']}")
|
| 1166 |
+
st.write(f"**Climate Zone**: {building2_data['climate_zone']}")
|
| 1167 |
+
st.write(f"**Variation**: {building2_data['variation_type']}")
|
| 1168 |
+
|
| 1169 |
+
# Add optional fields if they exist
|
| 1170 |
+
for field, label in [('floor_area', 'Floor Area'), ('num_zones', 'Zones'), ('window_wall_ratio', 'WWR')]:
|
| 1171 |
+
if field in building2_data and pd.notna(building2_data[field]):
|
| 1172 |
+
if field == 'floor_area':
|
| 1173 |
+
st.write(f"**{label}**: {building2_data[field]:.0f} mΒ²")
|
| 1174 |
+
elif field == 'window_wall_ratio':
|
| 1175 |
+
st.write(f"**{label}**: {building2_data[field]:.2%}")
|
| 1176 |
+
else:
|
| 1177 |
+
st.write(f"**{label}**: {building2_data[field]}")
|
| 1178 |
+
|
| 1179 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 1180 |
+
|
| 1181 |
+
# Load and compare epJSON files
|
| 1182 |
+
st.subheader("π§ Technical Comparison")
|
| 1183 |
+
|
| 1184 |
+
epjson1 = load_building_epjson(building1_data['filepath'])
|
| 1185 |
+
epjson2 = load_building_epjson(building2_data['filepath'])
|
| 1186 |
+
|
| 1187 |
+
if epjson1 and epjson2:
|
| 1188 |
+
analysis1 = analyze_building_epjson(epjson1)
|
| 1189 |
+
analysis2 = analyze_building_epjson(epjson2)
|
| 1190 |
+
|
| 1191 |
+
# Technical comparison table
|
| 1192 |
+
tech_comparison = pd.DataFrame({
|
| 1193 |
+
'Component': ['Zones', 'Surfaces', 'Windows', 'HVAC Systems', 'Schedules', 'Materials'],
|
| 1194 |
+
building1: [
|
| 1195 |
+
analysis1['zones'], analysis1['surfaces'], analysis1['windows'],
|
| 1196 |
+
analysis1['hvac_systems'], analysis1['schedules'], analysis1['materials']
|
| 1197 |
+
],
|
| 1198 |
+
building2: [
|
| 1199 |
+
analysis2['zones'], analysis2['surfaces'], analysis2['windows'],
|
| 1200 |
+
analysis2['hvac_systems'], analysis2['schedules'], analysis2['materials']
|
| 1201 |
+
]
|
| 1202 |
+
})
|
| 1203 |
+
|
| 1204 |
+
# Add difference column
|
| 1205 |
+
tech_comparison['Difference'] = tech_comparison[building2] - tech_comparison[building1]
|
| 1206 |
+
|
| 1207 |
+
st.dataframe(tech_comparison, use_container_width=True)
|
| 1208 |
+
|
| 1209 |
+
# Processing status comparison
|
| 1210 |
+
st.subheader("β‘ Processing Status Comparison")
|
| 1211 |
+
|
| 1212 |
+
status_comparison = pd.DataFrame({
|
| 1213 |
+
'Status': ['Has Meters', 'Has Setpoints', 'Timesteps/Hour'],
|
| 1214 |
+
building1: [
|
| 1215 |
+
"β
" if analysis1['has_meters'] else "β",
|
| 1216 |
+
"β
" if analysis1['has_setpoints'] else "β",
|
| 1217 |
+
str(analysis1['timestep'] or 'Not set')
|
| 1218 |
+
],
|
| 1219 |
+
building2: [
|
| 1220 |
+
"β
" if analysis2['has_meters'] else "β",
|
| 1221 |
+
"β
" if analysis2['has_setpoints'] else "β",
|
| 1222 |
+
str(analysis2['timestep'] or 'Not set')
|
| 1223 |
+
]
|
| 1224 |
+
})
|
| 1225 |
+
|
| 1226 |
+
st.dataframe(status_comparison, use_container_width=True)
|
| 1227 |
+
else:
|
| 1228 |
+
st.info("Please select two different buildings to compare.")
|
| 1229 |
+
|
| 1230 |
+
elif current_page == "π Analysis & Reports":
|
| 1231 |
+
st.header("Analysis & Reports")
|
| 1232 |
+
|
| 1233 |
+
if buildings_df.empty:
|
| 1234 |
+
st.warning("No building data available for analysis.")
|
| 1235 |
+
return
|
| 1236 |
+
|
| 1237 |
+
# Analysis options
|
| 1238 |
+
analysis_type = st.selectbox(
|
| 1239 |
+
"Choose analysis type:",
|
| 1240 |
+
["π Statistical Summary", "π Data Quality Check", "π Detailed Report", "π― Custom Analysis"]
|
| 1241 |
+
)
|
| 1242 |
+
|
| 1243 |
+
if analysis_type == "π Statistical Summary":
|
| 1244 |
+
st.subheader("Statistical Summary")
|
| 1245 |
+
|
| 1246 |
+
# Numeric column statistics
|
| 1247 |
+
numeric_cols = []
|
| 1248 |
+
for col in ['floor_area', 'num_zones', 'window_wall_ratio']:
|
| 1249 |
+
if col in buildings_df.columns:
|
| 1250 |
+
numeric_cols.append(col)
|
| 1251 |
+
|
| 1252 |
+
if numeric_cols:
|
| 1253 |
+
st.write("**Numeric Properties Statistics:**")
|
| 1254 |
+
stats_df = buildings_df[numeric_cols].describe()
|
| 1255 |
+
st.dataframe(stats_df, use_container_width=True)
|
| 1256 |
+
|
| 1257 |
+
# Categorical distributions
|
| 1258 |
+
st.write("**Categorical Distributions:**")
|
| 1259 |
+
|
| 1260 |
+
col1, col2 = st.columns(2)
|
| 1261 |
+
with col1:
|
| 1262 |
+
if 'building_type' in buildings_df.columns:
|
| 1263 |
+
type_dist = buildings_df['building_type'].value_counts()
|
| 1264 |
+
st.write("Building Types:")
|
| 1265 |
+
st.bar_chart(type_dist)
|
| 1266 |
+
|
| 1267 |
+
with col2:
|
| 1268 |
+
if 'climate_zone' in buildings_df.columns:
|
| 1269 |
+
climate_dist = buildings_df['climate_zone'].value_counts()
|
| 1270 |
+
st.write("Climate Zones:")
|
| 1271 |
+
st.bar_chart(climate_dist)
|
| 1272 |
+
|
| 1273 |
+
elif analysis_type == "π Data Quality Check":
|
| 1274 |
+
st.subheader("Data Quality Assessment")
|
| 1275 |
+
|
| 1276 |
+
# Missing data check
|
| 1277 |
+
missing_data = buildings_df.isnull().sum()
|
| 1278 |
+
if missing_data.sum() > 0:
|
| 1279 |
+
st.write("**Missing Data:**")
|
| 1280 |
+
missing_df = missing_data[missing_data > 0].to_frame('Missing Count')
|
| 1281 |
+
missing_df['Percentage'] = (missing_df['Missing Count'] / len(buildings_df) * 100).round(2)
|
| 1282 |
+
st.dataframe(missing_df)
|
| 1283 |
+
else:
|
| 1284 |
+
st.success("β
No missing data found!")
|
| 1285 |
+
|
| 1286 |
+
# Duplicate check
|
| 1287 |
+
duplicates = buildings_df.duplicated().sum()
|
| 1288 |
+
if duplicates > 0:
|
| 1289 |
+
st.warning(f"β οΈ Found {duplicates} duplicate rows")
|
| 1290 |
+
else:
|
| 1291 |
+
st.success("β
No duplicate rows found!")
|
| 1292 |
+
|
| 1293 |
+
# File existence check
|
| 1294 |
+
if 'filepath' in buildings_df.columns:
|
| 1295 |
+
st.write("**File Existence Check:**")
|
| 1296 |
+
missing_files = []
|
| 1297 |
+
for idx, row in buildings_df.iterrows():
|
| 1298 |
+
filepath = Path("data") / row['filepath']
|
| 1299 |
+
if not filepath.exists():
|
| 1300 |
+
missing_files.append(row['name'])
|
| 1301 |
+
|
| 1302 |
+
if missing_files:
|
| 1303 |
+
st.error(f"β {len(missing_files)} building files not found")
|
| 1304 |
+
with st.expander("Show missing files"):
|
| 1305 |
+
for file in missing_files[:10]: # Show first 10
|
| 1306 |
+
st.write(f"- {file}")
|
| 1307 |
+
if len(missing_files) > 10:
|
| 1308 |
+
st.write(f"... and {len(missing_files) - 10} more")
|
| 1309 |
+
else:
|
| 1310 |
+
st.success("β
All building files exist!")
|
| 1311 |
+
|
| 1312 |
+
elif analysis_type == "π Detailed Report":
|
| 1313 |
+
st.subheader("Generate Detailed Report")
|
| 1314 |
+
|
| 1315 |
+
# Report options
|
| 1316 |
+
include_weather = st.checkbox("Include weather data analysis", value=True)
|
| 1317 |
+
include_combinations = st.checkbox("Include combination analysis", value=True)
|
| 1318 |
+
|
| 1319 |
+
if st.button("Generate Report"):
|
| 1320 |
+
with st.spinner("Generating report..."):
|
| 1321 |
+
# Generate comprehensive report
|
| 1322 |
+
report_data = {
|
| 1323 |
+
'timestamp': pd.Timestamp.now(),
|
| 1324 |
+
'buildings_total': len(buildings_df),
|
| 1325 |
+
'weather_total': len(weather_df) if not weather_df.empty else 0,
|
| 1326 |
+
'combinations_total': len(combinations_df) if not combinations_df.empty else 0
|
| 1327 |
+
}
|
| 1328 |
+
|
| 1329 |
+
st.success("π Report generated successfully!")
|
| 1330 |
+
|
| 1331 |
+
# Display key metrics
|
| 1332 |
+
metric_col1, metric_col2, metric_col3 = st.columns(3)
|
| 1333 |
+
|
| 1334 |
+
with metric_col1:
|
| 1335 |
+
st.metric("Buildings Analyzed", report_data['buildings_total'])
|
| 1336 |
+
|
| 1337 |
+
with metric_col2:
|
| 1338 |
+
if include_weather:
|
| 1339 |
+
st.metric("Weather Locations", report_data['weather_total'])
|
| 1340 |
+
|
| 1341 |
+
with metric_col3:
|
| 1342 |
+
if include_combinations:
|
| 1343 |
+
st.metric("Combinations", report_data['combinations_total'])
|
| 1344 |
+
|
| 1345 |
+
# Download report
|
| 1346 |
+
report_text = f"""
|
| 1347 |
+
Building Generator Analysis Report
|
| 1348 |
+
Generated: {report_data['timestamp']}
|
| 1349 |
+
|
| 1350 |
+
Summary Statistics:
|
| 1351 |
+
- Total Buildings: {report_data['buildings_total']}
|
| 1352 |
+
- Weather Locations: {report_data['weather_total']}
|
| 1353 |
+
- Simulation Combinations: {report_data['combinations_total']}
|
| 1354 |
+
|
| 1355 |
+
Building Type Distribution:
|
| 1356 |
+
{buildings_df['building_type'].value_counts().to_string() if not buildings_df.empty else 'No data'}
|
| 1357 |
+
|
| 1358 |
+
Climate Zone Distribution:
|
| 1359 |
+
{buildings_df['climate_zone'].value_counts().to_string() if not buildings_df.empty else 'No data'}
|
| 1360 |
+
"""
|
| 1361 |
+
|
| 1362 |
+
st.download_button(
|
| 1363 |
+
label="π₯ Download Report",
|
| 1364 |
+
data=report_text,
|
| 1365 |
+
file_name=f"building_analysis_report_{pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')}.txt",
|
| 1366 |
+
mime="text/plain"
|
| 1367 |
+
)
|
| 1368 |
+
|
| 1369 |
+
elif analysis_type == "π― Custom Analysis":
|
| 1370 |
+
st.subheader("Custom Analysis")
|
| 1371 |
+
st.info("π§ Custom analysis features coming soon! This will include:")
|
| 1372 |
+
|
| 1373 |
+
col1, col2 = st.columns(2)
|
| 1374 |
+
with col1:
|
| 1375 |
+
st.markdown("""
|
| 1376 |
+
**Planned Features:**
|
| 1377 |
+
- Building performance correlation analysis
|
| 1378 |
+
- Climate impact assessment
|
| 1379 |
+
- Variation effectiveness studies
|
| 1380 |
+
- Energy consumption modeling
|
| 1381 |
+
- Optimization recommendations
|
| 1382 |
+
""")
|
| 1383 |
+
|
| 1384 |
+
with col2:
|
| 1385 |
+
st.markdown("""
|
| 1386 |
+
**Interactive Tools:**
|
| 1387 |
+
- Custom filter combinations
|
| 1388 |
+
- Advanced statistical analysis
|
| 1389 |
+
- Machine learning insights
|
| 1390 |
+
- Predictive modeling
|
| 1391 |
+
- Export to research formats
|
| 1392 |
+
""")
|
| 1393 |
+
|
| 1394 |
+
if __name__ == "__main__":
|
| 1395 |
+
main()
|