def create_dataset_statistics(buildings_df: pd.DataFrame, weather_df: pd.DataFrame, combinations_df: pd.DataFrame): """Create comprehensive dataset statistics section""" st.subheader("πŸ“Š Dataset Statistics & Information") # Dataset description st.markdown("""

πŸ—οΈ About This Dataset

This comprehensive building energy dataset contains energy models for various building types across different climate zones. The dataset is designed for energy simulation research, building performance analysis, and climate impact studies.

Each building model includes detailed geometric properties, construction materials, HVAC systems, and occupancy schedules. Multiple variations are generated from base models to study the impact of different parameters on energy performance.

Weather data is sourced from global meteorological stations and covers multiple climate zones as defined by ASHRAE standards, enabling comprehensive climate-specific energy analysis.

""", unsafe_allow_html=True) # Detailed statistics col1, col2 = st.columns(2) with col1: st.subheader("🏒 Building Dataset Details") if not buildings_df.empty: # Building type breakdown building_types = buildings_df['building_type'].value_counts() st.markdown("**Building Types Distribution:**") for btype, count in building_types.items(): percentage = (count / len(buildings_df)) * 100 st.write(f"β€’ **{btype.title()}**: {count} models ({percentage:.1f}%)") st.markdown("---") # Variation breakdown variation_types = buildings_df['variation_type'].value_counts() st.markdown("**Variation Types:**") for var_type, count in variation_types.items(): percentage = (count / len(buildings_df)) * 100 st.write(f"β€’ **{var_type.title()}**: {count} models ({percentage:.1f}%)") st.markdown("---") # Climate zone coverage climate_zones = buildings_df['climate_zone'].value_counts().sort_index() st.markdown("**Climate Zone Coverage:**") for zone, count in climate_zones.items(): st.write(f"β€’ **Zone {zone}**: {count} buildings") else: st.warning("No building data available") with col2: st.subheader("🌍 Weather Dataset Details") if not weather_df.empty: # Geographic coverage st.markdown("**Geographic Coverage:**") st.write(f"β€’ **Total Locations**: {len(weather_df)}") st.write(f"β€’ **Countries Covered**: {weather_df['country'].nunique()}") st.write(f"β€’ **Climate Zones**: {weather_df['climate_zone_code'].nunique()}") # Climate zone distribution in weather data weather_climate_zones = weather_df['climate_zone_code'].value_counts().sort_index() st.markdown("**Weather Locations by Climate Zone:**") for zone, count in weather_climate_zones.head(10).items(): st.write(f"β€’ **Zone {zone}**: {count} locations") st.markdown("---") # Top countries by location count top_countries = weather_df['country'].value_counts().head(8) st.markdown("**Top Countries by Weather Locations:**") for country, count in top_countries.items(): st.write(f"β€’ **{country}**: {count} locations") # Data sources if available if 'data_source' in weather_df.columns: st.markdown("---") data_sources = weather_df['data_source'].value_counts() st.markdown("**Data Sources:**") for source, count in data_sources.items(): st.write(f"β€’ **{source}**: {count} files") else: st.warning("No weather data available") # Dataset quality metrics st.subheader("🎯 Dataset Quality Metrics") quality_col1, quality_col2, quality_col3, quality_col4 = st.columns(4) with quality_col1: completeness = 0 if not buildings_df.empty: total_fields = len(buildings_df.columns) missing_fields = buildings_df.isnull().sum().sum() total_possible = len(buildings_df) * total_fields completeness = ((total_possible - missing_fields) / total_possible) * 100 if total_possible > 0 else 0 st.markdown(f"""
πŸ“ˆ
{completeness:.1f}%
Data Completeness
""", unsafe_allow_html=True) with quality_col2: file_coverage = 0 if not buildings_df.empty and 'filepath' in buildings_df.columns: existing_files = 0 for _, row in buildings_df.iterrows(): filepath = Path("data") / row['filepath'] if filepath.exists(): existing_files += 1 file_coverage = (existing_files / len(buildings_df)) * 100 st.markdown(f"""
πŸ“
{file_coverage:.1f}%
File Availability
""", unsafe_allow_html=True) with quality_col3: diversity_score = 0 if not buildings_df.empty: type_entropy = len(buildings_df['building_type'].unique()) / len(buildings_df) * 100 climate_entropy = len(buildings_df['climate_zone'].unique()) / len(buildings_df) * 100 diversity_score = (type_entropy + climate_entropy) / 2 st.markdown(f"""
🎨
{diversity_score:.1f}%
Dataset Diversity
""", unsafe_allow_html=True) with quality_col4: simulation_readiness = 0 if not combinations_df.empty: simulation_readiness = 100 elif not buildings_df.empty and not weather_df.empty: simulation_readiness = 75 elif not buildings_df.empty or not weather_df.empty: simulation_readiness = 50 st.markdown(f"""
⚑
{simulation_readiness}%
Simulation Ready
""", unsafe_allow_html=True) # Usage recommendations st.subheader("πŸ’‘ Usage Recommendations") recommendation_col1, recommendation_col2 = st.columns(2) with recommendation_col1: st.markdown("""
πŸ”¬ Research Applications
""", unsafe_allow_html=True) with recommendation_col2: st.markdown("""
βš™οΈ Getting Started
""", unsafe_allow_html=True)# dashboard/streamlit_app.py """ Building Generator Dashboard - Main Streamlit Application Interactive web interface for exploring building energy models and weather data """ import streamlit as st import pandas as pd import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import numpy as np from pathlib import Path import sys import json from typing import Dict, List, Optional import logging # Add the project root to Python path PROJECT_ROOT = Path(__file__).parent.parent sys.path.insert(0, str(PROJECT_ROOT)) from building_gen.core.pipeline import BuildingPipeline # Configure page st.set_page_config( page_title="Building Generator Dashboard", page_icon="πŸ—οΈ", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS for dark theme styling st.markdown(""" """, unsafe_allow_html=True) @st.cache_data def load_pipeline_data(data_dir: str = "data"): """Load and cache pipeline data""" try: pipeline = BuildingPipeline(data_dir) # Load building data buildings_path = Path(data_dir) / "tables/buildings.csv" buildings_df = pd.read_csv(buildings_path) if buildings_path.exists() else pd.DataFrame() # Load weather data weather_path = Path(data_dir) / "weather/tables/all_weather.csv" weather_df = pd.read_csv(weather_path) if weather_path.exists() else pd.DataFrame() # Load combinations if available combinations_path = Path(data_dir) / "tables/building_weather_combinations.csv" combinations_df = pd.read_csv(combinations_path) if combinations_path.exists() else pd.DataFrame() return pipeline, buildings_df, weather_df, combinations_df except Exception as e: st.error(f"Failed to load data: {e}") return None, pd.DataFrame(), pd.DataFrame(), pd.DataFrame() def create_building_filters(buildings_df: pd.DataFrame) -> Dict: """Create filter widgets for buildings""" st.markdown('
', unsafe_allow_html=True) st.subheader("πŸ” Filter Buildings") col1, col2, col3 = st.columns(3) with col1: building_types = st.multiselect( "Building Type", options=sorted(buildings_df['building_type'].unique()) if not buildings_df.empty else [], default=[] ) climate_zones = st.multiselect( "Climate Zone", options=sorted(buildings_df['climate_zone'].unique()) if not buildings_df.empty else [], default=[] ) with col2: variation_types = st.multiselect( "Variation Type", options=sorted(buildings_df['variation_type'].unique()) if not buildings_df.empty else [], default=[] ) # Floor area range if not buildings_df.empty and 'floor_area' in buildings_df.columns: min_area = float(buildings_df['floor_area'].min()) max_area = float(buildings_df['floor_area'].max()) area_range = st.slider( "Floor Area Range (mΒ²)", min_value=min_area, max_value=max_area, value=(min_area, max_area), format="%.0f" ) else: area_range = (0, 10000) with col3: # Window-to-wall ratio if available if not buildings_df.empty and 'window_wall_ratio' in buildings_df.columns: min_wwr = float(buildings_df['window_wall_ratio'].min()) max_wwr = float(buildings_df['window_wall_ratio'].max()) wwr_range = st.slider( "Window-to-Wall Ratio", min_value=min_wwr, max_value=max_wwr, value=(min_wwr, max_wwr), format="%.2f" ) else: wwr_range = (0.0, 1.0) # Number of zones range if not buildings_df.empty and 'num_zones' in buildings_df.columns: min_zones = int(buildings_df['num_zones'].min()) max_zones = int(buildings_df['num_zones'].max()) zones_range = st.slider( "Number of Zones", min_value=min_zones, max_value=max_zones, value=(min_zones, max_zones) ) else: zones_range = (1, 100) st.markdown('
', unsafe_allow_html=True) return { 'building_types': building_types, 'climate_zones': climate_zones, 'variation_types': variation_types, 'area_range': area_range, 'wwr_range': wwr_range, 'zones_range': zones_range } def apply_building_filters(buildings_df: pd.DataFrame, filters: Dict) -> pd.DataFrame: """Apply filters to buildings dataframe""" filtered_df = buildings_df.copy() if filters['building_types']: filtered_df = filtered_df[filtered_df['building_type'].isin(filters['building_types'])] if filters['climate_zones']: filtered_df = filtered_df[filtered_df['climate_zone'].isin(filters['climate_zones'])] if filters['variation_types']: filtered_df = filtered_df[filtered_df['variation_type'].isin(filters['variation_types'])] if 'floor_area' in filtered_df.columns: filtered_df = filtered_df[ (filtered_df['floor_area'] >= filters['area_range'][0]) & (filtered_df['floor_area'] <= filters['area_range'][1]) ] if 'window_wall_ratio' in filtered_df.columns: filtered_df = filtered_df[ (filtered_df['window_wall_ratio'] >= filters['wwr_range'][0]) & (filtered_df['window_wall_ratio'] <= filters['wwr_range'][1]) ] if 'num_zones' in filtered_df.columns: filtered_df = filtered_df[ (filtered_df['num_zones'] >= filters['zones_range'][0]) & (filtered_df['num_zones'] <= filters['zones_range'][1]) ] return filtered_df def create_overview_metrics(buildings_df: pd.DataFrame, weather_df: pd.DataFrame, combinations_df: pd.DataFrame): """Create overview metrics display with consistent sizing and dark theme""" col1, col2, col3, col4 = st.columns(4) with col1: st.markdown(f"""
🏒 Buildings
{len(buildings_df)}
{len(buildings_df[buildings_df['variation_type'] != 'base']) if not buildings_df.empty else 0} variations
""", unsafe_allow_html=True) with col2: st.markdown(f"""
🌍 Weather Locations
{len(weather_df)}
{weather_df['country'].nunique() if not weather_df.empty else 0} countries
""", unsafe_allow_html=True) with col3: combinations_status = "Not created" if len(combinations_df) == 0 else "Ready" st.markdown(f"""
πŸ”„ Combinations
{len(combinations_df)}
{combinations_status}
""", unsafe_allow_html=True) with col4: climate_zones = buildings_df['climate_zone'].nunique() if not buildings_df.empty else 0 st.markdown(f"""
🌑️ Climate Zones
{climate_zones}
ASHRAE zones
""", unsafe_allow_html=True) def create_dark_theme_plotly_layout(): """Create consistent dark theme layout for Plotly charts""" return { 'plot_bgcolor': 'rgba(0,0,0,0)', 'paper_bgcolor': 'rgba(0,0,0,0)', 'font': {'color': 'white'}, 'xaxis': { 'gridcolor': '#404040', 'linecolor': '#404040', 'tickcolor': '#404040', 'color': 'white' }, 'yaxis': { 'gridcolor': '#404040', 'linecolor': '#404040', 'tickcolor': '#404040', 'color': 'white' } } def create_building_characteristics_chart(buildings_df: pd.DataFrame): """Create building characteristics visualization with dark theme""" if buildings_df.empty: st.warning("No building data available") return tab1, tab2, tab3, tab4 = st.tabs(["πŸ“Š Distribution", "πŸ—ΊοΈ Climate Zones", "πŸ—οΈ Types", "πŸ“ Properties"]) with tab1: col1, col2 = st.columns(2) with col1: # Building type distribution type_counts = buildings_df['building_type'].value_counts() fig_types = px.pie( values=type_counts.values, names=type_counts.index, title="Building Types Distribution", color_discrete_sequence=px.colors.qualitative.Set3 ) fig_types.update_layout(**create_dark_theme_plotly_layout(), height=400) st.plotly_chart(fig_types, use_container_width=True) with col2: # Variation type distribution var_counts = buildings_df['variation_type'].value_counts() fig_vars = px.bar( x=var_counts.index, y=var_counts.values, title="Variation Types", color=var_counts.index, color_discrete_sequence=px.colors.qualitative.Pastel ) fig_vars.update_layout(**create_dark_theme_plotly_layout(), height=400, showlegend=False) st.plotly_chart(fig_vars, use_container_width=True) with tab2: # Climate zone analysis climate_counts = buildings_df['climate_zone'].value_counts() fig_climate = px.bar( x=climate_counts.index, y=climate_counts.values, title="Buildings by Climate Zone", color=climate_counts.values, color_continuous_scale='viridis' ) fig_climate.update_layout(**create_dark_theme_plotly_layout(), height=400) st.plotly_chart(fig_climate, use_container_width=True) # Climate zone descriptions climate_descriptions = { '1A': 'Very Hot - Humid', '1B': 'Very Hot - Dry', '2A': 'Hot - Humid', '2B': 'Hot - Dry', '3A': 'Warm - Humid', '3B': 'Warm - Dry', '3C': 'Warm - Marine', '4A': 'Mixed - Humid', '4B': 'Mixed - Dry', '4C': 'Mixed - Marine', '5A': 'Cool - Humid', '5B': 'Cool - Dry', '5C': 'Cool - Marine', '6A': 'Cold - Humid', '6B': 'Cold - Dry', '7': 'Very Cold', '8': 'Subarctic' } st.subheader("Climate Zone Descriptions") for zone in sorted(buildings_df['climate_zone'].unique()): if zone in climate_descriptions: st.info(f"**{zone}**: {climate_descriptions[zone]}") with tab3: # Building type details st.subheader("Building Type Analysis") # Check which columns exist before grouping agg_dict = {'floor_area': ['count']} if 'floor_area' in buildings_df.columns: agg_dict['floor_area'] = ['count', 'mean', 'std'] if 'num_zones' in buildings_df.columns: agg_dict['num_zones'] = ['mean', 'std'] if 'window_wall_ratio' in buildings_df.columns: agg_dict['window_wall_ratio'] = ['mean', 'std'] type_summary = buildings_df.groupby('building_type').agg(agg_dict).round(2) st.dataframe(type_summary, use_container_width=True) with tab4: # Property correlations numeric_cols = [] for col in ['floor_area', 'num_zones', 'window_wall_ratio']: if col in buildings_df.columns: numeric_cols.append(col) if len(numeric_cols) >= 2: corr_matrix = buildings_df[numeric_cols].corr() fig_corr = px.imshow( corr_matrix, color_continuous_scale='RdBu', aspect='auto', title='Building Property Correlations' ) fig_corr.update_layout(**create_dark_theme_plotly_layout()) st.plotly_chart(fig_corr, use_container_width=True) # Scatter plots if len(numeric_cols) >= 2: col1, col2 = st.columns(2) with col1: if 'floor_area' in numeric_cols and 'num_zones' in numeric_cols: fig_scatter1 = px.scatter( buildings_df, x='floor_area', y='num_zones', color='building_type', title='Floor Area vs Number of Zones', hover_data=['name'] ) fig_scatter1.update_layout(**create_dark_theme_plotly_layout()) st.plotly_chart(fig_scatter1, use_container_width=True) with col2: if 'window_wall_ratio' in numeric_cols and 'floor_area' in numeric_cols: fig_scatter2 = px.scatter( buildings_df, x='window_wall_ratio', y='floor_area', color='building_type', title='Window-Wall Ratio vs Floor Area', hover_data=['name'] ) fig_scatter2.update_layout(**create_dark_theme_plotly_layout()) st.plotly_chart(fig_scatter2, use_container_width=True) def display_buildings_table(buildings_df: pd.DataFrame): """Display interactive buildings table""" st.subheader("πŸ“‹ Buildings Database") if buildings_df.empty: st.warning("No buildings found matching the current filters.") return # Prepare column config based on available columns column_config = { "id": st.column_config.NumberColumn("ID", width="small"), "name": st.column_config.TextColumn("Building Name", width="large"), "building_type": st.column_config.TextColumn("Type", width="medium"), "climate_zone": st.column_config.TextColumn("Climate", width="small"), "variation_type": st.column_config.TextColumn("Variation", width="medium"), "filepath": st.column_config.TextColumn("File Path", width="large") } # Add optional columns if they exist if 'floor_area' in buildings_df.columns: column_config["floor_area"] = st.column_config.NumberColumn("Floor Area (mΒ²)", format="%.0f", width="medium") if 'num_zones' in buildings_df.columns: column_config["num_zones"] = st.column_config.NumberColumn("Zones", width="small") if 'window_wall_ratio' in buildings_df.columns: column_config["window_wall_ratio"] = st.column_config.NumberColumn("WWR", format="%.2f", width="small") if 'created_date' in buildings_df.columns: column_config["created_date"] = st.column_config.DatetimeColumn("Created", width="medium") # Display the table selected_buildings = st.data_editor( buildings_df, use_container_width=True, hide_index=True, column_config=column_config, disabled=list(buildings_df.columns) # Make all columns read-only ) # Export functionality col1, col2, col3 = st.columns([1, 1, 2]) with col1: if st.button("πŸ“₯ Export to CSV"): csv = buildings_df.to_csv(index=False) st.download_button( label="Download CSV", data=csv, file_name=f"buildings_filtered_{pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')}.csv", mime="text/csv" ) def load_building_epjson(filepath: str, data_dir: str = "data") -> Optional[Dict]: """Load building epJSON file""" try: full_path = Path(data_dir) / filepath if full_path.exists(): with open(full_path, 'r') as f: return json.load(f) else: st.error(f"Building file not found: {full_path}") return None except Exception as e: st.error(f"Error loading building file: {e}") return None def analyze_building_epjson(epjson_data: Dict) -> Dict: """Analyze epJSON building data and extract key metrics""" analysis = { 'zones': 0, 'surfaces': 0, 'windows': 0, 'hvac_systems': 0, 'schedules': 0, 'materials': 0, 'constructions': 0, 'has_meters': False, 'has_setpoints': False, 'timestep': None } # Count building components if 'Zone' in epjson_data: analysis['zones'] = len(epjson_data['Zone']) if 'BuildingSurface:Detailed' in epjson_data: analysis['surfaces'] = len(epjson_data['BuildingSurface:Detailed']) if 'FenestrationSurface:Detailed' in epjson_data: analysis['windows'] = len(epjson_data['FenestrationSurface:Detailed']) if 'Schedule:Compact' in epjson_data: analysis['schedules'] = len(epjson_data['Schedule:Compact']) if 'Material' in epjson_data: analysis['materials'] = len(epjson_data['Material']) if 'Construction' in epjson_data: analysis['constructions'] = len(epjson_data['Construction']) # Check for HVAC systems hvac_objects = ['AirLoopHVAC', 'PlantLoop', 'ZoneHVAC:IdealLoadsAirSystem'] analysis['hvac_systems'] = sum(len(epjson_data.get(obj, {})) for obj in hvac_objects) # Check for meters and outputs analysis['has_meters'] = 'Output:Meter' in epjson_data analysis['has_setpoints'] = any('Setpoint' in key for key in epjson_data.keys()) # Get timestep if 'Timestep' in epjson_data: timestep_obj = list(epjson_data['Timestep'].values())[0] analysis['timestep'] = timestep_obj.get('number_of_timesteps_per_hour', 'Unknown') return analysis def create_mock_energy_profile(building_name: str): """Create mock energy profile for demonstration with dark theme""" st.subheader("⚑ Energy Profile (Demo)") st.info("πŸ“ Note: This is demonstration data. Connect to actual EnergyPlus simulation results for real data.") # Mock hourly load profile hours = list(range(24)) base_load = 100 peak_factor = np.sin(np.array(hours) * np.pi / 12) mock_load = base_load + 50 * peak_factor + np.random.normal(0, 10, 24) mock_load = np.maximum(mock_load, 20) # Minimum load # Mock monthly energy months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] heating_load = [150, 120, 80, 40, 10, 0, 0, 0, 20, 60, 100, 140] cooling_load = [0, 0, 10, 30, 60, 100, 120, 110, 70, 30, 5, 0] col1, col2 = st.columns(2) with col1: # Hourly profile fig_hourly = px.line( x=hours, y=mock_load, title="Typical Daily Load Profile", labels={'x': 'Hour of Day', 'y': 'Power (kW)'} ) fig_hourly.update_traces(line_color='#00d4ff') fig_hourly.update_layout(**create_dark_theme_plotly_layout()) st.plotly_chart(fig_hourly, use_container_width=True) with col2: # Monthly profile fig_monthly = go.Figure() fig_monthly.add_trace(go.Bar(x=months, y=heating_load, name='Heating', marker_color='#ff6b6b')) fig_monthly.add_trace(go.Bar(x=months, y=cooling_load, name='Cooling', marker_color='#4ecdc4')) fig_monthly.update_layout( **create_dark_theme_plotly_layout(), title="Monthly Energy Consumption", xaxis_title="Month", yaxis_title="Energy (kWh/mΒ²)", barmode='stack' ) st.plotly_chart(fig_monthly, use_container_width=True) def main(): """Main Streamlit application""" st.title("πŸ—οΈ Building Generator Dashboard") st.markdown("Interactive exploration of building energy models and weather data") # Load data with st.spinner("Loading building and weather data..."): pipeline, buildings_df, weather_df, combinations_df = load_pipeline_data() if pipeline is None: st.error("Failed to initialize application. Please check your data directory.") st.info("Make sure you have run: `python scripts/main.py --create-table` and `python scripts/main.py --create-weather-table`") return # Sidebar for navigation st.sidebar.title("πŸ—‚οΈ Navigation") # Initialize session state for page navigation if 'current_page' not in st.session_state: st.session_state.current_page = "🏠 Overview" # Use session state to control the selectbox page_options = ["🏠 Overview", "🏒 Building Explorer", "🌍 Weather Data", "βš–οΈ Compare Buildings", "πŸ“Š Analysis & Reports"] current_index = page_options.index(st.session_state.current_page) if st.session_state.current_page in page_options else 0 page = st.sidebar.selectbox( "Choose a page:", page_options, index=current_index, key="page_selector" ) # Update session state when selectbox changes if page != st.session_state.current_page: st.session_state.current_page = page # Use the current page from session state current_page = st.session_state.current_page if current_page == "🏠 Overview": st.header("System Overview") # System overview create_overview_metrics(buildings_df, weather_df, combinations_df) elif current_page == "🏒 Building Explorer": st.header("Building Explorer") if buildings_df.empty: st.warning("No building data available. Run `python scripts/main.py --create-table` first.") return # Filters filters = create_building_filters(buildings_df) # Apply filters filtered_buildings = apply_building_filters(buildings_df, filters) st.subheader(f"πŸ“Š Found {len(filtered_buildings)} buildings") # Visualizations if not filtered_buildings.empty: create_building_characteristics_chart(filtered_buildings) # Buildings table display_buildings_table(filtered_buildings) # Building details expander if not filtered_buildings.empty: st.subheader("πŸ” Building Details") selected_building = st.selectbox( "Select a building to analyze:", options=filtered_buildings['name'].tolist(), index=0 ) if selected_building: building_info = filtered_buildings[filtered_buildings['name'] == selected_building].iloc[0] col1, col2 = st.columns([1, 2]) with col1: st.markdown('
', unsafe_allow_html=True) st.subheader(f"πŸ“‹ {building_info['name']}") st.write(f"**Type**: {building_info['building_type']}") st.write(f"**Climate Zone**: {building_info['climate_zone']}") st.write(f"**Variation**: {building_info['variation_type']}") # Add optional fields if they exist if 'floor_area' in building_info and pd.notna(building_info['floor_area']): st.write(f"**Floor Area**: {building_info['floor_area']:.0f} mΒ²") if 'num_zones' in building_info and pd.notna(building_info['num_zones']): st.write(f"**Zones**: {building_info['num_zones']}") if 'window_wall_ratio' in building_info and pd.notna(building_info['window_wall_ratio']): st.write(f"**WWR**: {building_info['window_wall_ratio']:.2%}") st.markdown('
', unsafe_allow_html=True) with col2: # Load and analyze building file epjson_data = load_building_epjson(building_info['filepath']) if epjson_data: analysis = analyze_building_epjson(epjson_data) st.subheader("πŸ”§ Building Analysis") # Create metrics display metric_col1, metric_col2, metric_col3 = st.columns(3) with metric_col1: st.metric("Zones", analysis['zones']) st.metric("Surfaces", analysis['surfaces']) with metric_col2: st.metric("Windows", analysis['windows']) st.metric("HVAC Systems", analysis['hvac_systems']) with metric_col3: st.metric("Schedules", analysis['schedules']) st.metric("Materials", analysis['materials']) # Status indicators st.subheader("⚑ Processing Status") status_col1, status_col2, status_col3 = st.columns(3) with status_col1: meter_status = "βœ… Yes" if analysis['has_meters'] else "❌ No" st.metric("Has Meters", meter_status) with status_col2: setpoint_status = "βœ… Yes" if analysis['has_setpoints'] else "❌ No" st.metric("Has Setpoints", setpoint_status) with status_col3: timestep_value = analysis['timestep'] or "Not set" st.metric("Timesteps/Hour", timestep_value) # Mock energy profile create_mock_energy_profile(selected_building) elif current_page == "🌍 Weather Data": st.header("Weather Data Explorer") if weather_df.empty: st.warning("No weather data available. Run `python scripts/main.py --create-weather-table` first.") return # Weather filters st.subheader("🌑️ Filter Weather Locations") col1, col2, col3 = st.columns(3) with col1: countries = st.multiselect( "Countries", options=sorted(weather_df['country'].unique()), default=[] ) climate_zones_weather = st.multiselect( "Climate Zones", options=sorted(weather_df['climate_zone_code'].unique()), default=[] ) with col2: if 'data_source' in weather_df.columns: data_sources = st.multiselect( "Data Sources", options=weather_df['data_source'].unique(), default=[] ) else: data_sources = [] lat_range = st.slider( "Latitude Range", min_value=float(weather_df['latitude'].min()), max_value=float(weather_df['latitude'].max()), value=(float(weather_df['latitude'].min()), float(weather_df['latitude'].max())) ) with col3: lon_range = st.slider( "Longitude Range", min_value=float(weather_df['longitude'].min()), max_value=float(weather_df['longitude'].max()), value=(float(weather_df['longitude'].min()), float(weather_df['longitude'].max())) ) # Apply weather filters filtered_weather = weather_df.copy() if countries: filtered_weather = filtered_weather[filtered_weather['country'].isin(countries)] if climate_zones_weather: filtered_weather = filtered_weather[filtered_weather['climate_zone_code'].isin(climate_zones_weather)] if data_sources: filtered_weather = filtered_weather[filtered_weather['data_source'].isin(data_sources)] filtered_weather = filtered_weather[ (filtered_weather['latitude'] >= lat_range[0]) & (filtered_weather['latitude'] <= lat_range[1]) & (filtered_weather['longitude'] >= lon_range[0]) & (filtered_weather['longitude'] <= lon_range[1]) ] st.subheader(f"🌍 Found {len(filtered_weather)} weather locations") # Weather visualizations tab1, tab2, tab3 = st.tabs(["πŸ—ΊοΈ Map", "πŸ“Š Distribution", "πŸ“‹ Table"]) with tab1: # World map of weather locations fig_map = px.scatter_mapbox( filtered_weather, lat='latitude', lon='longitude', color='climate_zone_code', hover_data=['place', 'country'], mapbox_style='carto-darkmatter', # Dark theme map zoom=1, title='Weather Locations Worldwide' ) fig_map.update_layout(**create_dark_theme_plotly_layout(), height=600) st.plotly_chart(fig_map, use_container_width=True) with tab2: col1, col2 = st.columns(2) with col1: # Country distribution country_counts = filtered_weather['country'].value_counts().head(15) fig_countries = px.bar( x=country_counts.values, y=country_counts.index, orientation='h', title='Top 15 Countries by Weather Locations', color=country_counts.values, color_continuous_scale='viridis' ) fig_countries.update_layout(**create_dark_theme_plotly_layout(), height=500) st.plotly_chart(fig_countries, use_container_width=True) with col2: # Climate zone distribution climate_counts = filtered_weather['climate_zone_code'].value_counts() fig_climate = px.pie( values=climate_counts.values, names=climate_counts.index, title='Climate Zone Distribution', color_discrete_sequence=px.colors.qualitative.Set3 ) fig_climate.update_layout(**create_dark_theme_plotly_layout(), height=500) st.plotly_chart(fig_climate, use_container_width=True) with tab3: # Weather locations table st.dataframe( filtered_weather, use_container_width=True, hide_index=True, column_config={ "id": st.column_config.NumberColumn("ID", width="small"), "place": st.column_config.TextColumn("Location", width="large"), "country": st.column_config.TextColumn("Country", width="small"), "climate_zone_code": st.column_config.TextColumn("Climate", width="small"), "latitude": st.column_config.NumberColumn("Latitude", format="%.2f", width="medium"), "longitude": st.column_config.NumberColumn("Longitude", format="%.2f", width="medium"), "elevation": st.column_config.NumberColumn("Elevation (m)", width="medium") if 'elevation' in filtered_weather.columns else None, "data_source": st.column_config.TextColumn("Source", width="small") if 'data_source' in filtered_weather.columns else None } ) elif current_page == "βš–οΈ Compare Buildings": st.header("Building Comparison Tool") if buildings_df.empty: st.warning("No building data available for comparison.") return st.subheader("Select Buildings to Compare") # Building selection for comparison col1, col2 = st.columns(2) with col1: building1 = st.selectbox( "Building 1:", options=buildings_df['name'].tolist(), key="building1" ) with col2: building2 = st.selectbox( "Building 2:", options=buildings_df['name'].tolist(), key="building2" ) if building1 and building2 and building1 != building2: # Get building data building1_data = buildings_df[buildings_df['name'] == building1].iloc[0] building2_data = buildings_df[buildings_df['name'] == building2].iloc[0] # Comparison display st.subheader("πŸ” Building Comparison") col1, col2 = st.columns(2) with col1: st.markdown('
', unsafe_allow_html=True) st.subheader(f"🏒 {building1}") st.write(f"**Type**: {building1_data['building_type']}") st.write(f"**Climate Zone**: {building1_data['climate_zone']}") st.write(f"**Variation**: {building1_data['variation_type']}") # Add optional fields if they exist for field, label in [('floor_area', 'Floor Area'), ('num_zones', 'Zones'), ('window_wall_ratio', 'WWR')]: if field in building1_data and pd.notna(building1_data[field]): if field == 'floor_area': st.write(f"**{label}**: {building1_data[field]:.0f} m²") elif field == 'window_wall_ratio': st.write(f"**{label}**: {building1_data[field]:.2%}") else: st.write(f"**{label}**: {building1_data[field]}") st.markdown('
', unsafe_allow_html=True) with col2: st.markdown('
', unsafe_allow_html=True) st.subheader(f"🏒 {building2}") st.write(f"**Type**: {building2_data['building_type']}") st.write(f"**Climate Zone**: {building2_data['climate_zone']}") st.write(f"**Variation**: {building2_data['variation_type']}") # Add optional fields if they exist for field, label in [('floor_area', 'Floor Area'), ('num_zones', 'Zones'), ('window_wall_ratio', 'WWR')]: if field in building2_data and pd.notna(building2_data[field]): if field == 'floor_area': st.write(f"**{label}**: {building2_data[field]:.0f} m²") elif field == 'window_wall_ratio': st.write(f"**{label}**: {building2_data[field]:.2%}") else: st.write(f"**{label}**: {building2_data[field]}") st.markdown('
', unsafe_allow_html=True) # Load and compare epJSON files st.subheader("πŸ”§ Technical Comparison") epjson1 = load_building_epjson(building1_data['filepath']) epjson2 = load_building_epjson(building2_data['filepath']) if epjson1 and epjson2: analysis1 = analyze_building_epjson(epjson1) analysis2 = analyze_building_epjson(epjson2) # Technical comparison table tech_comparison = pd.DataFrame({ 'Component': ['Zones', 'Surfaces', 'Windows', 'HVAC Systems', 'Schedules', 'Materials'], building1: [ analysis1['zones'], analysis1['surfaces'], analysis1['windows'], analysis1['hvac_systems'], analysis1['schedules'], analysis1['materials'] ], building2: [ analysis2['zones'], analysis2['surfaces'], analysis2['windows'], analysis2['hvac_systems'], analysis2['schedules'], analysis2['materials'] ] }) # Add difference column tech_comparison['Difference'] = tech_comparison[building2] - tech_comparison[building1] st.dataframe(tech_comparison, use_container_width=True) # Processing status comparison st.subheader("⚑ Processing Status Comparison") status_comparison = pd.DataFrame({ 'Status': ['Has Meters', 'Has Setpoints', 'Timesteps/Hour'], building1: [ "βœ…" if analysis1['has_meters'] else "❌", "βœ…" if analysis1['has_setpoints'] else "❌", str(analysis1['timestep'] or 'Not set') ], building2: [ "βœ…" if analysis2['has_meters'] else "❌", "βœ…" if analysis2['has_setpoints'] else "❌", str(analysis2['timestep'] or 'Not set') ] }) st.dataframe(status_comparison, use_container_width=True) else: st.info("Please select two different buildings to compare.") elif current_page == "πŸ“Š Analysis & Reports": st.header("Analysis & Reports") if buildings_df.empty: st.warning("No building data available for analysis.") return # Analysis options analysis_type = st.selectbox( "Choose analysis type:", ["πŸ“ˆ Statistical Summary", "πŸ” Data Quality Check", "πŸ“‹ Detailed Report", "🎯 Custom Analysis"] ) if analysis_type == "πŸ“ˆ Statistical Summary": st.subheader("Statistical Summary") # Numeric column statistics numeric_cols = [] for col in ['floor_area', 'num_zones', 'window_wall_ratio']: if col in buildings_df.columns: numeric_cols.append(col) if numeric_cols: st.write("**Numeric Properties Statistics:**") stats_df = buildings_df[numeric_cols].describe() st.dataframe(stats_df, use_container_width=True) # Categorical distributions st.write("**Categorical Distributions:**") col1, col2 = st.columns(2) with col1: if 'building_type' in buildings_df.columns: type_dist = buildings_df['building_type'].value_counts() st.write("Building Types:") st.bar_chart(type_dist) with col2: if 'climate_zone' in buildings_df.columns: climate_dist = buildings_df['climate_zone'].value_counts() st.write("Climate Zones:") st.bar_chart(climate_dist) elif analysis_type == "πŸ” Data Quality Check": st.subheader("Data Quality Assessment") # Missing data check missing_data = buildings_df.isnull().sum() if missing_data.sum() > 0: st.write("**Missing Data:**") missing_df = missing_data[missing_data > 0].to_frame('Missing Count') missing_df['Percentage'] = (missing_df['Missing Count'] / len(buildings_df) * 100).round(2) st.dataframe(missing_df) else: st.success("βœ… No missing data found!") # Duplicate check duplicates = buildings_df.duplicated().sum() if duplicates > 0: st.warning(f"⚠️ Found {duplicates} duplicate rows") else: st.success("βœ… No duplicate rows found!") # File existence check if 'filepath' in buildings_df.columns: st.write("**File Existence Check:**") missing_files = [] for idx, row in buildings_df.iterrows(): filepath = Path("data") / row['filepath'] if not filepath.exists(): missing_files.append(row['name']) if missing_files: st.error(f"❌ {len(missing_files)} building files not found") with st.expander("Show missing files"): for file in missing_files[:10]: # Show first 10 st.write(f"- {file}") if len(missing_files) > 10: st.write(f"... and {len(missing_files) - 10} more") else: st.success("βœ… All building files exist!") elif analysis_type == "πŸ“‹ Detailed Report": st.subheader("Generate Detailed Report") # Report options include_weather = st.checkbox("Include weather data analysis", value=True) include_combinations = st.checkbox("Include combination analysis", value=True) if st.button("Generate Report"): with st.spinner("Generating report..."): # Generate comprehensive report report_data = { 'timestamp': pd.Timestamp.now(), 'buildings_total': len(buildings_df), 'weather_total': len(weather_df) if not weather_df.empty else 0, 'combinations_total': len(combinations_df) if not combinations_df.empty else 0 } st.success("πŸ“Š Report generated successfully!") # Display key metrics metric_col1, metric_col2, metric_col3 = st.columns(3) with metric_col1: st.metric("Buildings Analyzed", report_data['buildings_total']) with metric_col2: if include_weather: st.metric("Weather Locations", report_data['weather_total']) with metric_col3: if include_combinations: st.metric("Combinations", report_data['combinations_total']) # Download report report_text = f""" Building Generator Analysis Report Generated: {report_data['timestamp']} Summary Statistics: - Total Buildings: {report_data['buildings_total']} - Weather Locations: {report_data['weather_total']} - Simulation Combinations: {report_data['combinations_total']} Building Type Distribution: {buildings_df['building_type'].value_counts().to_string() if not buildings_df.empty else 'No data'} Climate Zone Distribution: {buildings_df['climate_zone'].value_counts().to_string() if not buildings_df.empty else 'No data'} """ st.download_button( label="πŸ“₯ Download Report", data=report_text, file_name=f"building_analysis_report_{pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')}.txt", mime="text/plain" ) elif analysis_type == "🎯 Custom Analysis": st.subheader("Custom Analysis") st.info("🚧 Custom analysis features coming soon! This will include:") col1, col2 = st.columns(2) with col1: st.markdown(""" **Planned Features:** - Building performance correlation analysis - Climate impact assessment - Variation effectiveness studies - Energy consumption modeling - Optimization recommendations """) with col2: st.markdown(""" **Interactive Tools:** - Custom filter combinations - Advanced statistical analysis - Machine learning insights - Predictive modeling - Export to research formats """) if __name__ == "__main__": main()