Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
1d382d9
1
Parent(s):
cefe80e
update gradio cached examples
Browse files- tts/gradio_api.py +34 -51
tts/gradio_api.py
CHANGED
|
@@ -1,17 +1,3 @@
|
|
| 1 |
-
# Copyright 2025 ByteDance and/or its affiliates.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
import multiprocessing as mp
|
| 16 |
import torch
|
| 17 |
import os
|
|
@@ -33,38 +19,44 @@ def forward_gpu(file_content, wav_path, latent_file, inp_text, time_step, p_w, t
|
|
| 33 |
return wav_bytes
|
| 34 |
|
| 35 |
def model_worker(input_queue, output_queue, device_id):
|
| 36 |
-
while True:
|
| 37 |
-
task = input_queue.get()
|
| 38 |
-
inp_audio_path, inp_npy_path, inp_text, infer_timestep, p_w, t_w = task
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
-
def main(inp_audio, inp_npy, inp_text, infer_timestep, p_w, t_w, processes
|
|
|
|
| 66 |
print("Push task to the inp queue |", inp_audio, inp_npy, inp_text, infer_timestep, p_w, t_w)
|
| 67 |
input_queue.put((inp_audio, inp_npy, inp_text, infer_timestep, p_w, t_w))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
res = output_queue.get()
|
| 69 |
if res is not None:
|
| 70 |
return res
|
|
@@ -78,19 +70,10 @@ if __name__ == '__main__':
|
|
| 78 |
|
| 79 |
num_workers = 1
|
| 80 |
devices = [0]
|
| 81 |
-
input_queue = mp_manager.Queue()
|
| 82 |
-
output_queue = mp_manager.Queue()
|
| 83 |
processes = []
|
| 84 |
|
| 85 |
-
print("Start open workers")
|
| 86 |
-
for i in range(num_workers):
|
| 87 |
-
p = mp.Process(target=model_worker, args=(input_queue, output_queue, i % len(devices) if devices is not None else None))
|
| 88 |
-
p.start()
|
| 89 |
-
processes.append(p)
|
| 90 |
-
|
| 91 |
api_interface = gr.Interface(fn=
|
| 92 |
-
partial(main, processes=processes,
|
| 93 |
-
output_queue=output_queue),
|
| 94 |
inputs=[gr.Audio(type="filepath", label="Upload .wav"), gr.File(type="filepath", label="Upload .npy"), "text",
|
| 95 |
gr.Number(label="infer timestep", value=32),
|
| 96 |
gr.Number(label="Intelligibility Weight", value=1.4),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import multiprocessing as mp
|
| 2 |
import torch
|
| 3 |
import os
|
|
|
|
| 19 |
return wav_bytes
|
| 20 |
|
| 21 |
def model_worker(input_queue, output_queue, device_id):
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
task = input_queue.get()
|
| 24 |
+
inp_audio_path, inp_npy_path, inp_text, infer_timestep, p_w, t_w = task
|
| 25 |
+
|
| 26 |
+
if inp_npy_path is None or inp_audio_path is None:
|
| 27 |
+
output_queue.put(None)
|
| 28 |
+
raise gr.Error("Please provide .wav and .npy file")
|
| 29 |
+
if (inp_audio_path.split('/')[-1][:-4] != inp_npy_path.split('/')[-1][:-4]):
|
| 30 |
+
output_queue.put(None)
|
| 31 |
+
raise gr.Error(".npy and .wav mismatch")
|
| 32 |
+
if len(inp_text) > 200:
|
| 33 |
+
output_queue.put(None)
|
| 34 |
+
raise gr.Error("input text is too long")
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
convert_to_wav(inp_audio_path)
|
| 38 |
+
wav_path = os.path.splitext(inp_audio_path)[0] + '.wav'
|
| 39 |
+
cut_wav(wav_path, max_len=24)
|
| 40 |
+
with open(wav_path, 'rb') as file:
|
| 41 |
+
file_content = file.read()
|
| 42 |
+
wav_bytes = forward_gpu(file_content, wav_path, inp_npy_path, inp_text, time_step=infer_timestep, p_w=p_w, t_w=t_w)
|
| 43 |
+
output_queue.put(wav_bytes)
|
| 44 |
+
except Exception as e:
|
| 45 |
+
traceback.print_exc()
|
| 46 |
+
print(task, str(e))
|
| 47 |
+
output_queue.put(None)
|
| 48 |
+
raise gr.Error("Generation failed")
|
| 49 |
|
| 50 |
|
| 51 |
+
def main(inp_audio, inp_npy, inp_text, infer_timestep, p_w, t_w, processes):
|
| 52 |
+
input_queue = mp_manager.Queue()
|
| 53 |
print("Push task to the inp queue |", inp_audio, inp_npy, inp_text, infer_timestep, p_w, t_w)
|
| 54 |
input_queue.put((inp_audio, inp_npy, inp_text, infer_timestep, p_w, t_w))
|
| 55 |
+
|
| 56 |
+
output_queue = mp_manager.Queue()
|
| 57 |
+
|
| 58 |
+
model_worker(input_queue, output_queue, 0)
|
| 59 |
+
|
| 60 |
res = output_queue.get()
|
| 61 |
if res is not None:
|
| 62 |
return res
|
|
|
|
| 70 |
|
| 71 |
num_workers = 1
|
| 72 |
devices = [0]
|
|
|
|
|
|
|
| 73 |
processes = []
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
api_interface = gr.Interface(fn=
|
| 76 |
+
partial(main, processes=processes),
|
|
|
|
| 77 |
inputs=[gr.Audio(type="filepath", label="Upload .wav"), gr.File(type="filepath", label="Upload .npy"), "text",
|
| 78 |
gr.Number(label="infer timestep", value=32),
|
| 79 |
gr.Number(label="Intelligibility Weight", value=1.4),
|