Spaces:
Running
on
Zero
Running
on
Zero
upload
Browse files- .gitignore +6 -0
- README.md +6 -3
- app.py +161 -0
- requirements.txt +5 -0
- src/__init__.py +0 -0
- src/attention_flux_nag.py +176 -0
- src/normalization.py +54 -0
- src/pipeline_flux_nag.py +461 -0
- src/transformer_flux.py +187 -0
.gitignore
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.idea/
|
| 2 |
+
|
| 3 |
+
__pycache__/
|
| 4 |
+
*.py[cod]
|
| 5 |
+
*$py.class
|
| 6 |
+
|
README.md
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
---
|
| 2 |
title: NAG FLUX.1-dev
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.32.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
|
|
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
title: NAG FLUX.1-dev
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.32.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
short_description: Demo of Normalized Attention Guidance for FLUX.1-dev
|
| 12 |
---
|
| 13 |
|
| 14 |
+
[[arXiv Paper]](https://arxiv.org/abs/2505.21179) [[Project Page]](https://chendaryen.github.io/NAG.github.io/)
|
| 15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import spaces
|
| 5 |
+
import torch
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import huggingface_hub
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
from src.pipeline_flux_nag import NAGFluxPipeline
|
| 11 |
+
from src.transformer_flux import NAGFluxTransformer2DModel
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
theme = gr.themes.Base(
|
| 15 |
+
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
transformer = NAGFluxTransformer2DModel.from_pretrained(
|
| 19 |
+
"black-forest-labs/FLUX.1-dev",
|
| 20 |
+
subfolder="transformer",
|
| 21 |
+
torch_dtype=torch.bfloat16,
|
| 22 |
+
)
|
| 23 |
+
pipe = NAGFluxPipeline.from_pretrained(
|
| 24 |
+
"black-forest-labs/FLUX.1-dev",
|
| 25 |
+
transformer=transformer,
|
| 26 |
+
torch_dtype=torch.bfloat16,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
device = "cuda"
|
| 30 |
+
pipe = pipe.to(device)
|
| 31 |
+
|
| 32 |
+
examples = [
|
| 33 |
+
["Portrait of AI researcher.", "Glasses.", 5],
|
| 34 |
+
["A beautiful cyborg.", "Robot.", 5],
|
| 35 |
+
["Minimalist abstract line drawing: face portrait of a girl with long hair.", "Complex, detail.", 5],
|
| 36 |
+
["A baby phoenix made of fire and flames is born from the smoking ashes.", "Low resolution, blurry, lack of details, illustration, cartoon, painting.", 5],
|
| 37 |
+
["A tiny astronaut hatching from an egg on the moon.", "Low resolution, blurry, lack of details, illustration, cartoon, painting.", 5]
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
@spaces.GPU
|
| 41 |
+
def sample(
|
| 42 |
+
prompt,
|
| 43 |
+
negative_prompt=None, guidance_scale=3.5,
|
| 44 |
+
nag_negative_prompt=None, nag_scale=5.0,
|
| 45 |
+
num_inference_steps=25,
|
| 46 |
+
seed=2025, randomize_seed=False,
|
| 47 |
+
compare=True,
|
| 48 |
+
):
|
| 49 |
+
prompt = prompt.strip()
|
| 50 |
+
negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None
|
| 51 |
+
guidance_scale = float(guidance_scale)
|
| 52 |
+
num_inference_steps = int(num_inference_steps)
|
| 53 |
+
|
| 54 |
+
if (randomize_seed):
|
| 55 |
+
seed = random.randint(0, 9007199254740991)
|
| 56 |
+
else:
|
| 57 |
+
seed = int(seed)
|
| 58 |
+
|
| 59 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 60 |
+
image_nag = pipe(
|
| 61 |
+
prompt,
|
| 62 |
+
negative_prompt=negative_prompt,
|
| 63 |
+
guidance_scale=guidance_scale,
|
| 64 |
+
nag_negative_prompt=nag_negative_prompt,
|
| 65 |
+
nag_scale=nag_scale,
|
| 66 |
+
generator=generator,
|
| 67 |
+
num_inference_steps=num_inference_steps,
|
| 68 |
+
).images[0]
|
| 69 |
+
|
| 70 |
+
if compare:
|
| 71 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 72 |
+
image_normal = pipe(
|
| 73 |
+
prompt,
|
| 74 |
+
negative_prompt=negative_prompt,
|
| 75 |
+
guidance_scale=guidance_scale,
|
| 76 |
+
generator=generator,
|
| 77 |
+
num_inference_steps=num_inference_steps,
|
| 78 |
+
).images[0]
|
| 79 |
+
else:
|
| 80 |
+
image_normal = Image.new("RGB", image_nag.size, color=(0, 0, 0))
|
| 81 |
+
|
| 82 |
+
return (image_normal, image_nag), seed
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def sample_example(
|
| 86 |
+
prompt,
|
| 87 |
+
nag_negative_prompt,
|
| 88 |
+
nag_scale,
|
| 89 |
+
):
|
| 90 |
+
outputs, seed = sample(
|
| 91 |
+
prompt=prompt,
|
| 92 |
+
nag_negative_prompt=nag_negative_prompt,
|
| 93 |
+
nag_scale=nag_scale,
|
| 94 |
+
)
|
| 95 |
+
return outputs, 3.5, 25, seed, True
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
css = '''
|
| 99 |
+
.gradio-container{
|
| 100 |
+
max-width: 768px !important;
|
| 101 |
+
margin: 0 auto;
|
| 102 |
+
}
|
| 103 |
+
'''
|
| 104 |
+
|
| 105 |
+
with gr.Blocks(css=css, theme=theme) as demo:
|
| 106 |
+
gr.Markdown('''# Normalized Attention Guidance (NAG) Flux-Dev
|
| 107 |
+
Implementation of [Normalized Attention Guidance](https://chendaryen.github.io/NAG.github.io/)
|
| 108 |
+
''')
|
| 109 |
+
with gr.Group():
|
| 110 |
+
prompt = gr.Textbox(
|
| 111 |
+
label="Prompt",
|
| 112 |
+
max_lines=1,
|
| 113 |
+
placeholder="Enter your prompt",
|
| 114 |
+
)
|
| 115 |
+
nag_negative_prompt = gr.Textbox(
|
| 116 |
+
label="Negative Prompt for NAG",
|
| 117 |
+
value="Low resolution, blurry, lack of details, illustration, cartoon, painting.",
|
| 118 |
+
max_lines=1,
|
| 119 |
+
)
|
| 120 |
+
nag_scale = gr.Slider(label="NAG Scale", minimum=1., maximum=20., step=0.25, value=5.)
|
| 121 |
+
compare = gr.Checkbox(label="Compare with baseline", info="If unchecked, only sample with NAG will be generated.", value=True)
|
| 122 |
+
button = gr.Button("Generate", min_width=120)
|
| 123 |
+
output = gr.ImageSlider(label="Left: Baseline, Right: With NAG", interactive=False)
|
| 124 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 125 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value=None, visible=False)
|
| 126 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1., maximum=15., step=0.1, value=3.5)
|
| 127 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=25)
|
| 128 |
+
seed = gr.Slider(label="Seed", minimum=1, maximum=9007199254740991, step=1, randomize=True)
|
| 129 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 130 |
+
|
| 131 |
+
gr.Examples(
|
| 132 |
+
examples=examples,
|
| 133 |
+
fn=sample_example,
|
| 134 |
+
inputs=[
|
| 135 |
+
prompt,
|
| 136 |
+
nag_negative_prompt,
|
| 137 |
+
nag_scale,
|
| 138 |
+
],
|
| 139 |
+
outputs=[output, guidance_scale, num_inference_steps, seed, compare],
|
| 140 |
+
cache_examples="lazy",
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
gr.on(
|
| 144 |
+
triggers=[
|
| 145 |
+
button.click,
|
| 146 |
+
prompt.submit
|
| 147 |
+
],
|
| 148 |
+
fn=sample,
|
| 149 |
+
inputs=[
|
| 150 |
+
prompt,
|
| 151 |
+
negative_prompt, guidance_scale,
|
| 152 |
+
nag_negative_prompt, nag_scale,
|
| 153 |
+
num_inference_steps,
|
| 154 |
+
seed, randomize_seed,
|
| 155 |
+
compare,
|
| 156 |
+
],
|
| 157 |
+
outputs=[output, seed],
|
| 158 |
+
)
|
| 159 |
+
if __name__ == "__main__":
|
| 160 |
+
huggingface_hub.login(os.getenv('HF_TOKEN'))
|
| 161 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate
|
| 2 |
+
diffusers
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
sentencepiece
|
src/__init__.py
ADDED
|
File without changes
|
src/attention_flux_nag.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
from diffusers.models.attention_processor import Attention
|
| 8 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class NAGFluxAttnProcessor2_0:
|
| 12 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
| 13 |
+
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
nag_scale: float = 1.0,
|
| 17 |
+
nag_tau=2.5,
|
| 18 |
+
nag_alpha=0.25,
|
| 19 |
+
encoder_hidden_states_length: int = None,
|
| 20 |
+
):
|
| 21 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 22 |
+
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 23 |
+
self.nag_scale = nag_scale
|
| 24 |
+
self.nag_tau = nag_tau
|
| 25 |
+
self.nag_alpha = nag_alpha
|
| 26 |
+
self.encoder_hidden_states_length = encoder_hidden_states_length
|
| 27 |
+
|
| 28 |
+
def __call__(
|
| 29 |
+
self,
|
| 30 |
+
attn: Attention,
|
| 31 |
+
hidden_states: torch.FloatTensor,
|
| 32 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 33 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 34 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 35 |
+
) -> torch.FloatTensor:
|
| 36 |
+
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 37 |
+
|
| 38 |
+
if self.nag_scale > 1.:
|
| 39 |
+
if encoder_hidden_states is not None:
|
| 40 |
+
assert len(hidden_states) == batch_size * 0.5
|
| 41 |
+
apply_guidance = True
|
| 42 |
+
else:
|
| 43 |
+
apply_guidance = False
|
| 44 |
+
|
| 45 |
+
# `sample` projections.
|
| 46 |
+
query = attn.to_q(hidden_states)
|
| 47 |
+
key = attn.to_k(hidden_states)
|
| 48 |
+
value = attn.to_v(hidden_states)
|
| 49 |
+
|
| 50 |
+
# attention
|
| 51 |
+
if apply_guidance and encoder_hidden_states is not None:
|
| 52 |
+
query = query.tile(2, 1, 1)
|
| 53 |
+
key = key.tile(2, 1, 1)
|
| 54 |
+
value = value.tile(2, 1, 1)
|
| 55 |
+
|
| 56 |
+
inner_dim = key.shape[-1]
|
| 57 |
+
head_dim = inner_dim // attn.heads
|
| 58 |
+
|
| 59 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 60 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 61 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 62 |
+
|
| 63 |
+
if attn.norm_q is not None:
|
| 64 |
+
query = attn.norm_q(query)
|
| 65 |
+
if attn.norm_k is not None:
|
| 66 |
+
key = attn.norm_k(key)
|
| 67 |
+
|
| 68 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
| 69 |
+
if encoder_hidden_states is not None:
|
| 70 |
+
# `context` projections.
|
| 71 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
| 72 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
| 73 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
| 74 |
+
|
| 75 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
| 76 |
+
batch_size, -1, attn.heads, head_dim
|
| 77 |
+
).transpose(1, 2)
|
| 78 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
| 79 |
+
batch_size, -1, attn.heads, head_dim
|
| 80 |
+
).transpose(1, 2)
|
| 81 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
| 82 |
+
batch_size, -1, attn.heads, head_dim
|
| 83 |
+
).transpose(1, 2)
|
| 84 |
+
|
| 85 |
+
if attn.norm_added_q is not None:
|
| 86 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
| 87 |
+
if attn.norm_added_k is not None:
|
| 88 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
| 89 |
+
|
| 90 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
| 91 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
| 92 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
| 93 |
+
|
| 94 |
+
encoder_hidden_states_length = encoder_hidden_states.shape[1]
|
| 95 |
+
|
| 96 |
+
else:
|
| 97 |
+
assert self.encoder_hidden_states_length is not None
|
| 98 |
+
encoder_hidden_states_length = self.encoder_hidden_states_length
|
| 99 |
+
|
| 100 |
+
if image_rotary_emb is not None:
|
| 101 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 102 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 103 |
+
|
| 104 |
+
if not apply_guidance:
|
| 105 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
| 106 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 107 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 108 |
+
|
| 109 |
+
else:
|
| 110 |
+
origin_batch_size = batch_size // 2
|
| 111 |
+
query, query_negative = torch.chunk(query, 2, dim=0)
|
| 112 |
+
key, key_negative = torch.chunk(key, 2, dim=0)
|
| 113 |
+
value, value_negative = torch.chunk(value, 2, dim=0)
|
| 114 |
+
|
| 115 |
+
hidden_states_negative = F.scaled_dot_product_attention(query_negative, key_negative, value_negative, dropout_p=0.0, is_causal=False)
|
| 116 |
+
hidden_states_negative = hidden_states_negative.transpose(1, 2).reshape(origin_batch_size, -1, attn.heads * head_dim)
|
| 117 |
+
hidden_states_negative = hidden_states_negative.to(query.dtype)
|
| 118 |
+
|
| 119 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
| 120 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(origin_batch_size, -1, attn.heads * head_dim)
|
| 121 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 122 |
+
|
| 123 |
+
if encoder_hidden_states is not None:
|
| 124 |
+
encoder_hidden_states, hidden_states = (
|
| 125 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
| 126 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
if apply_guidance:
|
| 130 |
+
encoder_hidden_states_negative, hidden_states_negative = (
|
| 131 |
+
hidden_states_negative[:, : encoder_hidden_states.shape[1]],
|
| 132 |
+
hidden_states_negative[:, encoder_hidden_states.shape[1]:],
|
| 133 |
+
)
|
| 134 |
+
hidden_states_positive = hidden_states
|
| 135 |
+
hidden_states_guidance = hidden_states_positive * self.nag_scale - hidden_states_negative * (self.nag_scale - 1)
|
| 136 |
+
norm_positive = torch.norm(hidden_states_positive, p=2, dim=-1, keepdim=True).expand(*hidden_states_positive.shape)
|
| 137 |
+
norm_guidance = torch.norm(hidden_states_guidance, p=2, dim=-1, keepdim=True).expand(*hidden_states_positive.shape)
|
| 138 |
+
|
| 139 |
+
scale = norm_guidance / norm_positive
|
| 140 |
+
hidden_states_guidance = hidden_states_guidance * torch.minimum(scale, scale.new_ones(1) * self.nag_tau) / scale
|
| 141 |
+
|
| 142 |
+
hidden_states = hidden_states_guidance * self.nag_alpha + hidden_states_positive * (1 - self.nag_alpha)
|
| 143 |
+
|
| 144 |
+
encoder_hidden_states = torch.cat((encoder_hidden_states, encoder_hidden_states_negative), dim=0)
|
| 145 |
+
|
| 146 |
+
# linear proj
|
| 147 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 148 |
+
# dropout
|
| 149 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 150 |
+
|
| 151 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 152 |
+
|
| 153 |
+
return hidden_states, encoder_hidden_states
|
| 154 |
+
|
| 155 |
+
else:
|
| 156 |
+
if apply_guidance:
|
| 157 |
+
image_hidden_states_negative = hidden_states_negative[:, encoder_hidden_states_length:]
|
| 158 |
+
image_hidden_states = hidden_states[:, encoder_hidden_states_length:]
|
| 159 |
+
|
| 160 |
+
image_hidden_states_positive = image_hidden_states
|
| 161 |
+
image_hidden_states_guidance = image_hidden_states_positive * self.nag_scale - image_hidden_states_negative * (self.nag_scale - 1)
|
| 162 |
+
norm_positive = torch.norm(image_hidden_states_positive, p=2, dim=-1, keepdim=True).expand(*image_hidden_states_positive.shape)
|
| 163 |
+
norm_guidance = torch.norm(image_hidden_states_guidance, p=2, dim=-1, keepdim=True).expand(*image_hidden_states_positive.shape)
|
| 164 |
+
|
| 165 |
+
scale = norm_guidance / norm_positive
|
| 166 |
+
image_hidden_states_guidance = image_hidden_states_guidance * torch.minimum(scale, scale.new_ones(1) * self.nag_tau) / scale
|
| 167 |
+
# scale = torch.nan_to_num(scale, 10)
|
| 168 |
+
# image_hidden_states_guidance[scale > self.nag_tau] = image_hidden_states_guidance[scale > self.nag_tau] / (norm_guidance[scale > self.nag_tau] + 1e-7) * norm_positive[scale > self.nag_tau] * self.nag_tau
|
| 169 |
+
|
| 170 |
+
image_hidden_states = image_hidden_states_guidance * self.nag_alpha + image_hidden_states_positive * (1 - self.nag_alpha)
|
| 171 |
+
|
| 172 |
+
hidden_states_negative[:, encoder_hidden_states_length:] = image_hidden_states
|
| 173 |
+
hidden_states[:, encoder_hidden_states_length:] = image_hidden_states
|
| 174 |
+
hidden_states = torch.cat((hidden_states, hidden_states_negative), dim=0)
|
| 175 |
+
|
| 176 |
+
return hidden_states
|
src/normalization.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, SD35AdaLayerNormZeroX
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class TruncAdaLayerNorm(AdaLayerNorm):
|
| 8 |
+
def forward(
|
| 9 |
+
self, x: torch.Tensor, timestep: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None
|
| 10 |
+
) -> torch.Tensor:
|
| 11 |
+
batch_size = x.shape[0]
|
| 12 |
+
return self.forward_old(
|
| 13 |
+
x,
|
| 14 |
+
temb[:batch_size] if temb is not None else None,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class TruncAdaLayerNormContinuous(AdaLayerNormContinuous):
|
| 19 |
+
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
|
| 20 |
+
batch_size = x.shape[0]
|
| 21 |
+
return self.forward_old(x, conditioning_embedding[:batch_size])
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class TruncAdaLayerNormZero(AdaLayerNormZero):
|
| 25 |
+
def forward(
|
| 26 |
+
self,
|
| 27 |
+
x: torch.Tensor,
|
| 28 |
+
timestep: Optional[torch.Tensor] = None,
|
| 29 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 30 |
+
hidden_dtype: Optional[torch.dtype] = None,
|
| 31 |
+
emb: Optional[torch.Tensor] = None,
|
| 32 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 33 |
+
batch_size = x.shape[0]
|
| 34 |
+
return self.forward_old(
|
| 35 |
+
x,
|
| 36 |
+
timestep[:batch_size] if timestep is not None else None,
|
| 37 |
+
class_labels[:batch_size] if class_labels is not None else None,
|
| 38 |
+
hidden_dtype,
|
| 39 |
+
emb[:batch_size] if emb is not None else None,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class TruncSD35AdaLayerNormZeroX(SD35AdaLayerNormZeroX):
|
| 44 |
+
def forward(
|
| 45 |
+
self,
|
| 46 |
+
hidden_states: torch.Tensor,
|
| 47 |
+
emb: Optional[torch.Tensor] = None,
|
| 48 |
+
) -> Tuple[torch.Tensor, ...]:
|
| 49 |
+
batch_size = hidden_states.shape[0]
|
| 50 |
+
return self.forward_old(
|
| 51 |
+
hidden_states,
|
| 52 |
+
emb[:batch_size] if emb is not None else None,
|
| 53 |
+
)
|
| 54 |
+
|
src/pipeline_flux_nag.py
ADDED
|
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Union, List, Optional, Dict, Any, Callable
|
| 3 |
+
import types
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from diffusers import FluxPipeline
|
| 9 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
|
| 10 |
+
from diffusers.image_processor import PipelineImageInput
|
| 11 |
+
from diffusers.utils import is_torch_xla_available
|
| 12 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
| 13 |
+
from diffusers.models.normalization import AdaLayerNormZero, AdaLayerNormContinuous
|
| 14 |
+
|
| 15 |
+
from src.attention_flux_nag import NAGFluxAttnProcessor2_0
|
| 16 |
+
from src.normalization import TruncAdaLayerNormZero, TruncAdaLayerNormContinuous
|
| 17 |
+
|
| 18 |
+
if is_torch_xla_available():
|
| 19 |
+
import torch_xla.core.xla_model as xm
|
| 20 |
+
|
| 21 |
+
XLA_AVAILABLE = True
|
| 22 |
+
else:
|
| 23 |
+
XLA_AVAILABLE = False
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class NAGFluxPipeline(FluxPipeline):
|
| 27 |
+
@property
|
| 28 |
+
def do_normalized_attention_guidance(self):
|
| 29 |
+
return self._nag_scale > 1
|
| 30 |
+
|
| 31 |
+
def _set_nag_attn_processor(
|
| 32 |
+
self,
|
| 33 |
+
nag_scale,
|
| 34 |
+
encoder_hidden_states_length,
|
| 35 |
+
nag_tau=2.5,
|
| 36 |
+
nag_alpha=0.25,
|
| 37 |
+
):
|
| 38 |
+
attn_procs = {}
|
| 39 |
+
for name in self.transformer.attn_processors.keys():
|
| 40 |
+
attn_procs[name] = NAGFluxAttnProcessor2_0(
|
| 41 |
+
nag_scale=nag_scale,
|
| 42 |
+
nag_tau=nag_tau,
|
| 43 |
+
nag_alpha=nag_alpha,
|
| 44 |
+
encoder_hidden_states_length=encoder_hidden_states_length,
|
| 45 |
+
)
|
| 46 |
+
self.transformer.set_attn_processor(attn_procs)
|
| 47 |
+
|
| 48 |
+
@torch.no_grad()
|
| 49 |
+
def __call__(
|
| 50 |
+
self,
|
| 51 |
+
prompt: Union[str, List[str]] = None,
|
| 52 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 53 |
+
negative_prompt: Union[str, List[str]] = None,
|
| 54 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 55 |
+
true_cfg_scale: float = 1.0,
|
| 56 |
+
height: Optional[int] = None,
|
| 57 |
+
width: Optional[int] = None,
|
| 58 |
+
num_inference_steps: int = 28,
|
| 59 |
+
sigmas: Optional[List[float]] = None,
|
| 60 |
+
guidance_scale: float = 3.5,
|
| 61 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 62 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 63 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 64 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 65 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 66 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 67 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
| 68 |
+
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 69 |
+
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
| 70 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 71 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 72 |
+
output_type: Optional[str] = "pil",
|
| 73 |
+
return_dict: bool = True,
|
| 74 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 75 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 76 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 77 |
+
max_sequence_length: int = 512,
|
| 78 |
+
|
| 79 |
+
nag_scale: float = 1.0,
|
| 80 |
+
nag_tau: float = 2.5,
|
| 81 |
+
nag_alpha: float = 0.25,
|
| 82 |
+
nag_end: float = 1.0,
|
| 83 |
+
nag_negative_prompt: str = None,
|
| 84 |
+
nag_negative_prompt_2: str = None,
|
| 85 |
+
nag_negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 86 |
+
nag_negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 87 |
+
):
|
| 88 |
+
r"""
|
| 89 |
+
Function invoked when calling the pipeline for generation.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 93 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 94 |
+
instead.
|
| 95 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 96 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 97 |
+
will be used instead.
|
| 98 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 99 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 100 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
| 101 |
+
not greater than `1`).
|
| 102 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 103 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 104 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
| 105 |
+
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
| 106 |
+
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
|
| 107 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 108 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 109 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 110 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 111 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 112 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 113 |
+
expense of slower inference.
|
| 114 |
+
sigmas (`List[float]`, *optional*):
|
| 115 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 116 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 117 |
+
will be used.
|
| 118 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
| 119 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 120 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 121 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 122 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 123 |
+
usually at the expense of lower image quality.
|
| 124 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 125 |
+
The number of images to generate per prompt.
|
| 126 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 127 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 128 |
+
to make generation deterministic.
|
| 129 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 130 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 131 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 132 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 133 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 134 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 135 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 136 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 137 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 138 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 139 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
| 140 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
| 141 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 142 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
| 143 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 144 |
+
negative_ip_adapter_image:
|
| 145 |
+
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
| 146 |
+
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
| 147 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 148 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
|
| 149 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 150 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 151 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 152 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 153 |
+
argument.
|
| 154 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 155 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 156 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 157 |
+
input argument.
|
| 158 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 159 |
+
The output format of the generate image. Choose between
|
| 160 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 161 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 162 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
| 163 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 164 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 165 |
+
`self.processor` in
|
| 166 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 167 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 168 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 169 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 170 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 171 |
+
`callback_on_step_end_tensor_inputs`.
|
| 172 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 173 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 174 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 175 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 176 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
| 177 |
+
|
| 178 |
+
Examples:
|
| 179 |
+
|
| 180 |
+
Returns:
|
| 181 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
| 182 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
| 183 |
+
images.
|
| 184 |
+
"""
|
| 185 |
+
|
| 186 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 187 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 188 |
+
|
| 189 |
+
# 1. Check inputs. Raise error if not correct
|
| 190 |
+
self.check_inputs(
|
| 191 |
+
prompt,
|
| 192 |
+
prompt_2,
|
| 193 |
+
height,
|
| 194 |
+
width,
|
| 195 |
+
negative_prompt=negative_prompt,
|
| 196 |
+
negative_prompt_2=negative_prompt_2,
|
| 197 |
+
prompt_embeds=prompt_embeds,
|
| 198 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 199 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 200 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 201 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 202 |
+
max_sequence_length=max_sequence_length,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
self._guidance_scale = guidance_scale
|
| 206 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 207 |
+
self._current_timestep = None
|
| 208 |
+
self._interrupt = False
|
| 209 |
+
self._nag_scale = nag_scale
|
| 210 |
+
|
| 211 |
+
# 2. Define call parameters
|
| 212 |
+
if prompt is not None and isinstance(prompt, str):
|
| 213 |
+
batch_size = 1
|
| 214 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 215 |
+
batch_size = len(prompt)
|
| 216 |
+
else:
|
| 217 |
+
batch_size = prompt_embeds.shape[0]
|
| 218 |
+
|
| 219 |
+
device = self._execution_device
|
| 220 |
+
|
| 221 |
+
lora_scale = (
|
| 222 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 223 |
+
)
|
| 224 |
+
has_neg_prompt = negative_prompt is not None or (
|
| 225 |
+
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
|
| 226 |
+
)
|
| 227 |
+
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
| 228 |
+
# do_true_cfg = do_true_cfg or self.do_normalized_attention_guidance
|
| 229 |
+
|
| 230 |
+
(
|
| 231 |
+
prompt_embeds,
|
| 232 |
+
pooled_prompt_embeds,
|
| 233 |
+
text_ids,
|
| 234 |
+
) = self.encode_prompt(
|
| 235 |
+
prompt=prompt,
|
| 236 |
+
prompt_2=prompt_2,
|
| 237 |
+
prompt_embeds=prompt_embeds,
|
| 238 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 239 |
+
device=device,
|
| 240 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 241 |
+
max_sequence_length=max_sequence_length,
|
| 242 |
+
lora_scale=lora_scale,
|
| 243 |
+
)
|
| 244 |
+
if do_true_cfg:
|
| 245 |
+
(
|
| 246 |
+
negative_prompt_embeds,
|
| 247 |
+
negative_pooled_prompt_embeds,
|
| 248 |
+
_,
|
| 249 |
+
) = self.encode_prompt(
|
| 250 |
+
prompt=negative_prompt,
|
| 251 |
+
prompt_2=negative_prompt_2,
|
| 252 |
+
prompt_embeds=negative_prompt_embeds,
|
| 253 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 254 |
+
device=device,
|
| 255 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 256 |
+
max_sequence_length=max_sequence_length,
|
| 257 |
+
lora_scale=lora_scale,
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
if self.do_normalized_attention_guidance:
|
| 261 |
+
if nag_negative_prompt_embeds is None or nag_negative_pooled_prompt_embeds is None:
|
| 262 |
+
if nag_negative_prompt is None:
|
| 263 |
+
if negative_prompt is not None:
|
| 264 |
+
if do_true_cfg:
|
| 265 |
+
nag_negative_prompt_embeds = negative_prompt_embeds
|
| 266 |
+
nag_negative_pooled_prompt_embeds = negative_pooled_prompt_embeds
|
| 267 |
+
else:
|
| 268 |
+
nag_negative_prompt = negative_prompt
|
| 269 |
+
nag_negative_prompt_2 = negative_prompt_2
|
| 270 |
+
else:
|
| 271 |
+
nag_negative_prompt = ""
|
| 272 |
+
|
| 273 |
+
if nag_negative_prompt is not None:
|
| 274 |
+
nag_negative_prompt_embeds, nag_negative_pooled_prompt_embeds = self.encode_prompt(
|
| 275 |
+
prompt=nag_negative_prompt,
|
| 276 |
+
prompt_2=nag_negative_prompt_2,
|
| 277 |
+
device=device,
|
| 278 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 279 |
+
max_sequence_length=max_sequence_length,
|
| 280 |
+
lora_scale=lora_scale,
|
| 281 |
+
)[:2]
|
| 282 |
+
|
| 283 |
+
if self.do_normalized_attention_guidance:
|
| 284 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, nag_negative_pooled_prompt_embeds], dim=0)
|
| 285 |
+
prompt_embeds = torch.cat([prompt_embeds, nag_negative_prompt_embeds], dim=0)
|
| 286 |
+
|
| 287 |
+
# 4. Prepare latent variables
|
| 288 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 289 |
+
latents, latent_image_ids = self.prepare_latents(
|
| 290 |
+
batch_size * num_images_per_prompt,
|
| 291 |
+
num_channels_latents,
|
| 292 |
+
height,
|
| 293 |
+
width,
|
| 294 |
+
prompt_embeds.dtype,
|
| 295 |
+
device,
|
| 296 |
+
generator,
|
| 297 |
+
latents,
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# 5. Prepare timesteps
|
| 301 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
| 302 |
+
image_seq_len = latents.shape[1]
|
| 303 |
+
mu = calculate_shift(
|
| 304 |
+
image_seq_len,
|
| 305 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
| 306 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
| 307 |
+
self.scheduler.config.get("base_shift", 0.5),
|
| 308 |
+
self.scheduler.config.get("max_shift", 1.16),
|
| 309 |
+
)
|
| 310 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 311 |
+
self.scheduler,
|
| 312 |
+
num_inference_steps,
|
| 313 |
+
device,
|
| 314 |
+
sigmas=sigmas,
|
| 315 |
+
mu=mu,
|
| 316 |
+
)
|
| 317 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 318 |
+
self._num_timesteps = len(timesteps)
|
| 319 |
+
|
| 320 |
+
# handle guidance
|
| 321 |
+
if self.transformer.config.guidance_embeds:
|
| 322 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
| 323 |
+
guidance = guidance.expand(prompt_embeds.shape[0])
|
| 324 |
+
else:
|
| 325 |
+
guidance = None
|
| 326 |
+
|
| 327 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
|
| 328 |
+
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
|
| 329 |
+
):
|
| 330 |
+
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
| 331 |
+
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
|
| 332 |
+
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
|
| 333 |
+
):
|
| 334 |
+
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
|
| 335 |
+
|
| 336 |
+
if self.joint_attention_kwargs is None:
|
| 337 |
+
self._joint_attention_kwargs = {}
|
| 338 |
+
|
| 339 |
+
image_embeds = None
|
| 340 |
+
negative_image_embeds = None
|
| 341 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 342 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 343 |
+
ip_adapter_image,
|
| 344 |
+
ip_adapter_image_embeds,
|
| 345 |
+
device,
|
| 346 |
+
batch_size * num_images_per_prompt,
|
| 347 |
+
)
|
| 348 |
+
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
|
| 349 |
+
negative_image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 350 |
+
negative_ip_adapter_image,
|
| 351 |
+
negative_ip_adapter_image_embeds,
|
| 352 |
+
device,
|
| 353 |
+
batch_size * num_images_per_prompt,
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
origin_attn_procs = self.transformer.attn_processors
|
| 357 |
+
if self.do_normalized_attention_guidance:
|
| 358 |
+
self._set_nag_attn_processor(nag_scale, prompt_embeds.shape[1], nag_tau, nag_alpha)
|
| 359 |
+
attn_procs_recovered = False
|
| 360 |
+
|
| 361 |
+
for sub_mod in self.transformer.modules():
|
| 362 |
+
if not hasattr(sub_mod, "forward_old") :
|
| 363 |
+
sub_mod.forward_old = sub_mod.forward
|
| 364 |
+
if isinstance(sub_mod, AdaLayerNormZero):
|
| 365 |
+
sub_mod.forward = types.MethodType(TruncAdaLayerNormZero.forward, sub_mod)
|
| 366 |
+
elif isinstance(sub_mod, AdaLayerNormContinuous):
|
| 367 |
+
sub_mod.forward = types.MethodType(TruncAdaLayerNormContinuous.forward, sub_mod)
|
| 368 |
+
|
| 369 |
+
# 6. Denoising loop
|
| 370 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 371 |
+
for i, t in enumerate(timesteps):
|
| 372 |
+
if self.interrupt:
|
| 373 |
+
continue
|
| 374 |
+
|
| 375 |
+
if t < (1 - nag_end) * 1000 and self.do_normalized_attention_guidance and not attn_procs_recovered:
|
| 376 |
+
self.transformer.set_attn_processor(origin_attn_procs)
|
| 377 |
+
if guidance is not None:
|
| 378 |
+
guidance = guidance[:len(latents)]
|
| 379 |
+
pooled_prompt_embeds = pooled_prompt_embeds[:len(latents)]
|
| 380 |
+
prompt_embeds = prompt_embeds[:len(latents)]
|
| 381 |
+
attn_procs_recovered = True
|
| 382 |
+
|
| 383 |
+
self._current_timestep = t
|
| 384 |
+
if image_embeds is not None:
|
| 385 |
+
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
|
| 386 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 387 |
+
timestep = t.expand(prompt_embeds.shape[0]).to(latents.dtype)
|
| 388 |
+
|
| 389 |
+
noise_pred = self.transformer(
|
| 390 |
+
hidden_states=latents,
|
| 391 |
+
timestep=timestep / 1000,
|
| 392 |
+
guidance=guidance,
|
| 393 |
+
pooled_projections=pooled_prompt_embeds,
|
| 394 |
+
encoder_hidden_states=prompt_embeds,
|
| 395 |
+
txt_ids=text_ids,
|
| 396 |
+
img_ids=latent_image_ids,
|
| 397 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 398 |
+
return_dict=False,
|
| 399 |
+
)[0]
|
| 400 |
+
|
| 401 |
+
if do_true_cfg:
|
| 402 |
+
if negative_image_embeds is not None:
|
| 403 |
+
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
|
| 404 |
+
neg_noise_pred = self.transformer(
|
| 405 |
+
hidden_states=latents,
|
| 406 |
+
timestep=timestep / 1000,
|
| 407 |
+
guidance=guidance,
|
| 408 |
+
pooled_projections=negative_pooled_prompt_embeds,
|
| 409 |
+
encoder_hidden_states=negative_prompt_embeds,
|
| 410 |
+
txt_ids=text_ids,
|
| 411 |
+
img_ids=latent_image_ids,
|
| 412 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 413 |
+
return_dict=False,
|
| 414 |
+
)[0]
|
| 415 |
+
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
| 416 |
+
|
| 417 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 418 |
+
latents_dtype = latents.dtype
|
| 419 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 420 |
+
|
| 421 |
+
if latents.dtype != latents_dtype:
|
| 422 |
+
if torch.backends.mps.is_available():
|
| 423 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 424 |
+
latents = latents.to(latents_dtype)
|
| 425 |
+
|
| 426 |
+
if callback_on_step_end is not None:
|
| 427 |
+
callback_kwargs = {}
|
| 428 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 429 |
+
callback_kwargs[k] = locals()[k]
|
| 430 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 431 |
+
|
| 432 |
+
latents = callback_outputs.pop("latents", latents)
|
| 433 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 434 |
+
|
| 435 |
+
# call the callback, if provided
|
| 436 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 437 |
+
progress_bar.update()
|
| 438 |
+
|
| 439 |
+
if XLA_AVAILABLE:
|
| 440 |
+
xm.mark_step()
|
| 441 |
+
|
| 442 |
+
self._current_timestep = None
|
| 443 |
+
|
| 444 |
+
if output_type == "latent":
|
| 445 |
+
image = latents
|
| 446 |
+
else:
|
| 447 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 448 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 449 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 450 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 451 |
+
|
| 452 |
+
if self.do_normalized_attention_guidance and not attn_procs_recovered:
|
| 453 |
+
self.transformer.set_attn_processor(origin_attn_procs)
|
| 454 |
+
|
| 455 |
+
# Offload all models
|
| 456 |
+
self.maybe_free_model_hooks()
|
| 457 |
+
|
| 458 |
+
if not return_dict:
|
| 459 |
+
return (image,)
|
| 460 |
+
|
| 461 |
+
return FluxPipelineOutput(images=image)
|
src/transformer_flux.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 7 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 8 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class NAGFluxTransformer2DModel(FluxTransformer2DModel):
|
| 15 |
+
def forward(
|
| 16 |
+
self,
|
| 17 |
+
hidden_states: torch.Tensor,
|
| 18 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 19 |
+
pooled_projections: torch.Tensor = None,
|
| 20 |
+
timestep: torch.LongTensor = None,
|
| 21 |
+
img_ids: torch.Tensor = None,
|
| 22 |
+
txt_ids: torch.Tensor = None,
|
| 23 |
+
guidance: torch.Tensor = None,
|
| 24 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 25 |
+
controlnet_block_samples=None,
|
| 26 |
+
controlnet_single_block_samples=None,
|
| 27 |
+
return_dict: bool = True,
|
| 28 |
+
controlnet_blocks_repeat: bool = False,
|
| 29 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
| 30 |
+
"""
|
| 31 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
| 35 |
+
Input `hidden_states`.
|
| 36 |
+
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
| 37 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 38 |
+
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 39 |
+
from the embeddings of input conditions.
|
| 40 |
+
timestep ( `torch.LongTensor`):
|
| 41 |
+
Used to indicate denoising step.
|
| 42 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 43 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 44 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 45 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 46 |
+
`self.processor` in
|
| 47 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 48 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 49 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 50 |
+
tuple.
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 54 |
+
`tuple` where the first element is the sample tensor.
|
| 55 |
+
"""
|
| 56 |
+
if joint_attention_kwargs is not None:
|
| 57 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 58 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 59 |
+
else:
|
| 60 |
+
lora_scale = 1.0
|
| 61 |
+
|
| 62 |
+
if USE_PEFT_BACKEND:
|
| 63 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 64 |
+
scale_lora_layers(self, lora_scale)
|
| 65 |
+
else:
|
| 66 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 67 |
+
logger.warning(
|
| 68 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
do_nag = hidden_states.shape[0] != encoder_hidden_states.shape[0]
|
| 72 |
+
|
| 73 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 74 |
+
|
| 75 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 76 |
+
if guidance is not None:
|
| 77 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 78 |
+
else:
|
| 79 |
+
guidance = None
|
| 80 |
+
|
| 81 |
+
temb = (
|
| 82 |
+
self.time_text_embed(timestep, pooled_projections)
|
| 83 |
+
if guidance is None
|
| 84 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 85 |
+
)
|
| 86 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 87 |
+
|
| 88 |
+
if txt_ids.ndim == 3:
|
| 89 |
+
logger.warning(
|
| 90 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
| 91 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 92 |
+
)
|
| 93 |
+
txt_ids = txt_ids[0]
|
| 94 |
+
if img_ids.ndim == 3:
|
| 95 |
+
logger.warning(
|
| 96 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
| 97 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 98 |
+
)
|
| 99 |
+
img_ids = img_ids[0]
|
| 100 |
+
|
| 101 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 102 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 103 |
+
|
| 104 |
+
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
| 105 |
+
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
| 106 |
+
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
| 107 |
+
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
| 108 |
+
|
| 109 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 110 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 111 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 112 |
+
block,
|
| 113 |
+
hidden_states,
|
| 114 |
+
encoder_hidden_states,
|
| 115 |
+
temb,
|
| 116 |
+
image_rotary_emb,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
else:
|
| 120 |
+
encoder_hidden_states, hidden_states = block(
|
| 121 |
+
hidden_states=hidden_states,
|
| 122 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 123 |
+
temb=temb,
|
| 124 |
+
image_rotary_emb=image_rotary_emb,
|
| 125 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# controlnet residual
|
| 129 |
+
if controlnet_block_samples is not None:
|
| 130 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
| 131 |
+
interval_control = int(np.ceil(interval_control))
|
| 132 |
+
# For Xlabs ControlNet.
|
| 133 |
+
if controlnet_blocks_repeat:
|
| 134 |
+
hidden_states = (
|
| 135 |
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
| 136 |
+
)
|
| 137 |
+
else:
|
| 138 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
| 139 |
+
|
| 140 |
+
if do_nag:
|
| 141 |
+
hidden_states = hidden_states.tile(2, 1, 1)
|
| 142 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 143 |
+
|
| 144 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 145 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 146 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 147 |
+
block,
|
| 148 |
+
hidden_states,
|
| 149 |
+
temb,
|
| 150 |
+
image_rotary_emb,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
else:
|
| 154 |
+
hidden_states = block(
|
| 155 |
+
hidden_states=hidden_states,
|
| 156 |
+
temb=temb,
|
| 157 |
+
image_rotary_emb=image_rotary_emb,
|
| 158 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# controlnet residual
|
| 162 |
+
if controlnet_single_block_samples is not None:
|
| 163 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
| 164 |
+
interval_control = int(np.ceil(interval_control))
|
| 165 |
+
controlnet_single_block_sample = controlnet_single_block_samples[index_block // interval_control]
|
| 166 |
+
if do_nag:
|
| 167 |
+
controlnet_single_block_sample = controlnet_single_block_sample.tile(2, 1, 1)
|
| 168 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
| 169 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] + controlnet_single_block_sample
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 173 |
+
|
| 174 |
+
if do_nag:
|
| 175 |
+
hidden_states = torch.chunk(hidden_states, 2, dim=0)[0]
|
| 176 |
+
|
| 177 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 178 |
+
output = self.proj_out(hidden_states)
|
| 179 |
+
|
| 180 |
+
if USE_PEFT_BACKEND:
|
| 181 |
+
# remove `lora_scale` from each PEFT layer
|
| 182 |
+
unscale_lora_layers(self, lora_scale)
|
| 183 |
+
|
| 184 |
+
if not return_dict:
|
| 185 |
+
return (output,)
|
| 186 |
+
|
| 187 |
+
return Transformer2DModelOutput(sample=output)
|