File size: 10,588 Bytes
e037628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import cv2
import numpy as np
import os
from pathlib import Path
from PIL import Image

class AutomatedCollageSplitter:
    def __init__(self):
        self.min_segment_area_ratio = 0.01
        self.max_segment_area_ratio = 0.95
        self.min_aspect_ratio = 0.2
        self.max_aspect_ratio = 5.0
        self.min_solidity = 0.9
        self.nms_threshold = 0.3

        self.upscaler = None
        self._initialize_upscaler()

    def _initialize_upscaler(self):
        if self.upscaler is not None:
            return
        try:
            model_name = 'fsrcnn'
            model_path = os.path.join('models', 'weights', 'FSRCNN-small_x4.pb')
            scale = 4
            if not os.path.isfile(model_path):
                raise FileNotFoundError(f"Model file not found at {model_path}")
            self.upscaler = cv2.dnn_superres.DnnSuperResImpl_create()
            self.upscaler.readModel(model_path)
            self.upscaler.setModel(model_name, scale)
            print(f"βœ“ OpenCV DNN upscaler model loaded: {model_name} with scale x{scale}")
        except Exception as e:
            print(f"⚠ Could not initialize OpenCV DNN upscaler: {e}. Proceeding without upscaling.")
            self.upscaler = None

    def _upscale_image(self, image_array):
        if not self.upscaler:
            print("❌ Upscaling skipped because the upscaler is not available.")
            return image_array
        try:
            return self.upscaler.upsample(image_array)
        except Exception as e:
            print(f"❌ Error during image upscaling: {e}")
            return image_array

    def preprocess_for_contours(self, image):
        """Pre-process the image to make panel borders stand out for contour detection."""
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        binary = cv2.adaptiveThreshold(
            gray, 255,
            cv2.ADAPTIVE_THRESH_MEAN_C,
            cv2.THRESH_BINARY_INV,
            21, 
            8   
        )

        kernel = np.ones((5, 5), np.uint8)
        closed = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel, iterations=2)

        return closed

    def find_panel_contours(self, processed_image, original_shape):
        """Find and filter contours that are likely to be comic panels."""
        contours, _ = cv2.findContours(processed_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        height, width = original_shape[:2]
        total_area = height * width
        min_area = total_area * self.min_segment_area_ratio
        max_area = total_area * self.max_segment_area_ratio

        potential_panels = []
        for contour in contours:
            area = cv2.contourArea(contour)

            if not (min_area < area < max_area):
                continue

            x, y, w, h = cv2.boundingRect(contour)

            if h == 0: continue
            aspect_ratio = w / h
            if not (self.min_aspect_ratio < aspect_ratio < self.max_aspect_ratio):
                continue

            hull = cv2.convexHull(contour)
            hull_area = cv2.contourArea(hull)
            if hull_area == 0: continue
            solidity = float(area) / hull_area
            if solidity < self.min_solidity:
                continue

            potential_panels.append([x, y, x + w, y + h, area])

        return np.array(potential_panels)

    def apply_non_maximum_suppression(self, boxes):
        """Apply NMS to merge overlapping bounding boxes."""
        if len(boxes) == 0:
            return []

        boxes = boxes[boxes[:, 4].argsort()[::-1]]

        picked_boxes = []
        while len(boxes) > 0:
            best_box = boxes[0]
            picked_boxes.append(best_box)

            remaining_boxes = boxes[1:]

            x1 = np.maximum(best_box[0], remaining_boxes[:, 0])
            y1 = np.maximum(best_box[1], remaining_boxes[:, 1])
            x2 = np.minimum(best_box[2], remaining_boxes[:, 2])
            y2 = np.minimum(best_box[3], remaining_boxes[:, 3])

            inter_w = np.maximum(0, x2 - x1)
            inter_h = np.maximum(0, y2 - y1)
            intersection_area = inter_w * inter_h

            best_box_area = (best_box[2] - best_box[0]) * (best_box[3] - best_box[1])
            remaining_boxes_area = (remaining_boxes[:, 2] - remaining_boxes[:, 0]) * (remaining_boxes[:, 3] - remaining_boxes[:, 1])

            union_area = best_box_area + remaining_boxes_area - intersection_area
            iou = intersection_area / union_area

            boxes = remaining_boxes[iou < self.nms_threshold]

        return np.array(picked_boxes)

    def split_collage(self, image_path, output_dir=None, debug=False):
        """Main function to automatically split collage using contour detection and NMS."""
        img = cv2.imread(str(image_path))
        if img is None:
            raise ValueError(f"Could not load image from {image_path}")

        print(f"Processing image: {image_path}")
        print(f"Image dimensions: {img.shape[1]}x{img.shape[0]}")

        processed_image = self.preprocess_for_contours(img)
        print("βœ“ Preprocessed image for contour detection")

        potential_panels = self.find_panel_contours(processed_image, img.shape)
        print(f"βœ“ Found {len(potential_panels)} potential panel contours")

        final_panels = self.apply_non_maximum_suppression(potential_panels)
        print(f"βœ“ Refined to {len(final_panels)} panels after Non-Maximum Suppression")

        if len(final_panels) > 0:
            img_height = img.shape[0]
            panel_heights = [box[3] - box[1] for box in final_panels]
            if panel_heights:
                max_panel_height = max(panel_heights)

                if max_panel_height > 0:
                    bottom_margin = 10
                    height_threshold_ratio = 0.8

                    truly_final_panels = []
                    for box in final_panels:
                        h = box[3] - box[1]
                        y2 = box[3]

                        is_at_bottom = y2 >= (img_height - bottom_margin)
                        is_too_short = h < (max_panel_height * height_threshold_ratio)

                        if is_at_bottom and is_too_short:
                            print(f"Skipping potentially incomplete panel at the bottom (h={h} vs max_h={max_panel_height})")
                            continue
                        truly_final_panels.append(box)

                    final_panels = truly_final_panels

        if len(final_panels) < 4:
            print("⚠ Contour detection found too few panels. Creating fallback 2x2 grid...")
            h, w = img.shape[:2]
            final_panels = np.array([
                [0, 0, w//2, h//2, 0],
                [w//2, 0, w, h//2, 0],
                [0, h//2, w//2, h, 0],
                [w//2, h//2, w, h, 0]
            ])

        final_panels = sorted(final_panels, key=lambda b: (b[1], b[0]))

        if output_dir is None:
            output_dir = Path(image_path).parent / f"{Path(image_path).stem}_segments"
        output_dir = Path(output_dir)
        output_dir.mkdir(exist_ok=True)

        saved_segments_info = []
        for i, box in enumerate(final_panels):
            x1, y1, x2, y2, _ = map(int, box)

            padding = 3
            x1 = max(0, x1 - padding)
            y1 = max(0, y1 - padding)
            x2 = min(img.shape[1], x2 + padding)
            y2 = min(img.shape[0], y2 + padding)

            segment = img[y1:y2, x1:x2]
            original_dims = (segment.shape[1], segment.shape[0])

            upscaled_segment_np = self._upscale_image(segment)

            final_image = Image.fromarray(cv2.cvtColor(upscaled_segment_np, cv2.COLOR_BGR2RGB))

            final_dims = (final_image.width, final_image.height)
            output_path = output_dir / f"segment_{i+1:02d}.png"
            final_image.save(str(output_path))

            caption = (
                f"Panel {i+1}<br>"
                f"Original: {original_dims[0]}x{original_dims[1]}<br>"
                f"Upscaled: {final_dims[0]}x{final_dims[1]}"
            )

            saved_segments_info.append({
                "path": str(output_path),
                "caption": caption
            })
            print(f"  Saved segment {i+1}: {final_dims[0]}x{final_dims[1]} pixels to {output_path}")

        if debug:
            debug_potential_panels = self.find_panel_contours(processed_image, img.shape)
            self.create_debug_images(img, processed_image, debug_potential_panels, final_panels, output_dir)

        print(f"\nπŸŽ‰ Successfully split collage into {len(saved_segments_info)} segments!")
        print(f"πŸ“ Segments saved in: {output_dir}")
        return saved_segments_info

    def create_debug_images(self, original, processed, potential_boxes, final_boxes, output_dir):
        """Create debug images showing the processing steps."""
        cv2.imwrite(str(output_dir / "debug_01_binary_closed.png"), processed)

        potential_img = original.copy()
        if len(potential_boxes) > 0:
            for x1, y1, x2, y2, _ in potential_boxes:
                cv2.rectangle(potential_img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 255), 2)
        cv2.imwrite(str(output_dir / "debug_02_potential_boxes.png"), potential_img)

        final_img = original.copy()
        if len(final_boxes) > 0:
            for x1, y1, x2, y2, _ in final_boxes:
                cv2.rectangle(final_img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 3)
        cv2.imwrite(str(output_dir / "debug_03_final_panels.png"), final_img)

        print("πŸ” Debug images saved:")
        print("  - debug_01_binary_closed.png (preprocessed)")
        print("  - debug_02_potential_boxes.png (before NMS)")
        print("  - debug_03_final_panels.png (after NMS)")

def main():
    """Example usage"""
    splitter = AutomatedCollageSplitter()

    image_path = "path/to/your/comic_image.png"

    try:
        if not Path(image_path).exists():
             print(f"❌ Image file not found: {image_path}")
             print("Please update the image_path variable with the correct path to your collage image.")
             return

        segments = splitter.split_collage(
            image_path=image_path,
            debug=True
        )

        print(f"\nπŸ“Š Processing complete!")
        print(f"Generated {len(segments)} separate images from the collage")

    except Exception as e:
        print(f"❌ Error processing image: {e}")
        import traceback
        traceback.print_exc()

if __name__ == "__main__":
    main()