File size: 10,588 Bytes
e037628 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import cv2
import numpy as np
import os
from pathlib import Path
from PIL import Image
class AutomatedCollageSplitter:
def __init__(self):
self.min_segment_area_ratio = 0.01
self.max_segment_area_ratio = 0.95
self.min_aspect_ratio = 0.2
self.max_aspect_ratio = 5.0
self.min_solidity = 0.9
self.nms_threshold = 0.3
self.upscaler = None
self._initialize_upscaler()
def _initialize_upscaler(self):
if self.upscaler is not None:
return
try:
model_name = 'fsrcnn'
model_path = os.path.join('models', 'weights', 'FSRCNN-small_x4.pb')
scale = 4
if not os.path.isfile(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}")
self.upscaler = cv2.dnn_superres.DnnSuperResImpl_create()
self.upscaler.readModel(model_path)
self.upscaler.setModel(model_name, scale)
print(f"β OpenCV DNN upscaler model loaded: {model_name} with scale x{scale}")
except Exception as e:
print(f"β Could not initialize OpenCV DNN upscaler: {e}. Proceeding without upscaling.")
self.upscaler = None
def _upscale_image(self, image_array):
if not self.upscaler:
print("β Upscaling skipped because the upscaler is not available.")
return image_array
try:
return self.upscaler.upsample(image_array)
except Exception as e:
print(f"β Error during image upscaling: {e}")
return image_array
def preprocess_for_contours(self, image):
"""Pre-process the image to make panel borders stand out for contour detection."""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
binary = cv2.adaptiveThreshold(
gray, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY_INV,
21,
8
)
kernel = np.ones((5, 5), np.uint8)
closed = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel, iterations=2)
return closed
def find_panel_contours(self, processed_image, original_shape):
"""Find and filter contours that are likely to be comic panels."""
contours, _ = cv2.findContours(processed_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
height, width = original_shape[:2]
total_area = height * width
min_area = total_area * self.min_segment_area_ratio
max_area = total_area * self.max_segment_area_ratio
potential_panels = []
for contour in contours:
area = cv2.contourArea(contour)
if not (min_area < area < max_area):
continue
x, y, w, h = cv2.boundingRect(contour)
if h == 0: continue
aspect_ratio = w / h
if not (self.min_aspect_ratio < aspect_ratio < self.max_aspect_ratio):
continue
hull = cv2.convexHull(contour)
hull_area = cv2.contourArea(hull)
if hull_area == 0: continue
solidity = float(area) / hull_area
if solidity < self.min_solidity:
continue
potential_panels.append([x, y, x + w, y + h, area])
return np.array(potential_panels)
def apply_non_maximum_suppression(self, boxes):
"""Apply NMS to merge overlapping bounding boxes."""
if len(boxes) == 0:
return []
boxes = boxes[boxes[:, 4].argsort()[::-1]]
picked_boxes = []
while len(boxes) > 0:
best_box = boxes[0]
picked_boxes.append(best_box)
remaining_boxes = boxes[1:]
x1 = np.maximum(best_box[0], remaining_boxes[:, 0])
y1 = np.maximum(best_box[1], remaining_boxes[:, 1])
x2 = np.minimum(best_box[2], remaining_boxes[:, 2])
y2 = np.minimum(best_box[3], remaining_boxes[:, 3])
inter_w = np.maximum(0, x2 - x1)
inter_h = np.maximum(0, y2 - y1)
intersection_area = inter_w * inter_h
best_box_area = (best_box[2] - best_box[0]) * (best_box[3] - best_box[1])
remaining_boxes_area = (remaining_boxes[:, 2] - remaining_boxes[:, 0]) * (remaining_boxes[:, 3] - remaining_boxes[:, 1])
union_area = best_box_area + remaining_boxes_area - intersection_area
iou = intersection_area / union_area
boxes = remaining_boxes[iou < self.nms_threshold]
return np.array(picked_boxes)
def split_collage(self, image_path, output_dir=None, debug=False):
"""Main function to automatically split collage using contour detection and NMS."""
img = cv2.imread(str(image_path))
if img is None:
raise ValueError(f"Could not load image from {image_path}")
print(f"Processing image: {image_path}")
print(f"Image dimensions: {img.shape[1]}x{img.shape[0]}")
processed_image = self.preprocess_for_contours(img)
print("β Preprocessed image for contour detection")
potential_panels = self.find_panel_contours(processed_image, img.shape)
print(f"β Found {len(potential_panels)} potential panel contours")
final_panels = self.apply_non_maximum_suppression(potential_panels)
print(f"β Refined to {len(final_panels)} panels after Non-Maximum Suppression")
if len(final_panels) > 0:
img_height = img.shape[0]
panel_heights = [box[3] - box[1] for box in final_panels]
if panel_heights:
max_panel_height = max(panel_heights)
if max_panel_height > 0:
bottom_margin = 10
height_threshold_ratio = 0.8
truly_final_panels = []
for box in final_panels:
h = box[3] - box[1]
y2 = box[3]
is_at_bottom = y2 >= (img_height - bottom_margin)
is_too_short = h < (max_panel_height * height_threshold_ratio)
if is_at_bottom and is_too_short:
print(f"Skipping potentially incomplete panel at the bottom (h={h} vs max_h={max_panel_height})")
continue
truly_final_panels.append(box)
final_panels = truly_final_panels
if len(final_panels) < 4:
print("β Contour detection found too few panels. Creating fallback 2x2 grid...")
h, w = img.shape[:2]
final_panels = np.array([
[0, 0, w//2, h//2, 0],
[w//2, 0, w, h//2, 0],
[0, h//2, w//2, h, 0],
[w//2, h//2, w, h, 0]
])
final_panels = sorted(final_panels, key=lambda b: (b[1], b[0]))
if output_dir is None:
output_dir = Path(image_path).parent / f"{Path(image_path).stem}_segments"
output_dir = Path(output_dir)
output_dir.mkdir(exist_ok=True)
saved_segments_info = []
for i, box in enumerate(final_panels):
x1, y1, x2, y2, _ = map(int, box)
padding = 3
x1 = max(0, x1 - padding)
y1 = max(0, y1 - padding)
x2 = min(img.shape[1], x2 + padding)
y2 = min(img.shape[0], y2 + padding)
segment = img[y1:y2, x1:x2]
original_dims = (segment.shape[1], segment.shape[0])
upscaled_segment_np = self._upscale_image(segment)
final_image = Image.fromarray(cv2.cvtColor(upscaled_segment_np, cv2.COLOR_BGR2RGB))
final_dims = (final_image.width, final_image.height)
output_path = output_dir / f"segment_{i+1:02d}.png"
final_image.save(str(output_path))
caption = (
f"Panel {i+1}<br>"
f"Original: {original_dims[0]}x{original_dims[1]}<br>"
f"Upscaled: {final_dims[0]}x{final_dims[1]}"
)
saved_segments_info.append({
"path": str(output_path),
"caption": caption
})
print(f" Saved segment {i+1}: {final_dims[0]}x{final_dims[1]} pixels to {output_path}")
if debug:
debug_potential_panels = self.find_panel_contours(processed_image, img.shape)
self.create_debug_images(img, processed_image, debug_potential_panels, final_panels, output_dir)
print(f"\nπ Successfully split collage into {len(saved_segments_info)} segments!")
print(f"π Segments saved in: {output_dir}")
return saved_segments_info
def create_debug_images(self, original, processed, potential_boxes, final_boxes, output_dir):
"""Create debug images showing the processing steps."""
cv2.imwrite(str(output_dir / "debug_01_binary_closed.png"), processed)
potential_img = original.copy()
if len(potential_boxes) > 0:
for x1, y1, x2, y2, _ in potential_boxes:
cv2.rectangle(potential_img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 255), 2)
cv2.imwrite(str(output_dir / "debug_02_potential_boxes.png"), potential_img)
final_img = original.copy()
if len(final_boxes) > 0:
for x1, y1, x2, y2, _ in final_boxes:
cv2.rectangle(final_img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 3)
cv2.imwrite(str(output_dir / "debug_03_final_panels.png"), final_img)
print("π Debug images saved:")
print(" - debug_01_binary_closed.png (preprocessed)")
print(" - debug_02_potential_boxes.png (before NMS)")
print(" - debug_03_final_panels.png (after NMS)")
def main():
"""Example usage"""
splitter = AutomatedCollageSplitter()
image_path = "path/to/your/comic_image.png"
try:
if not Path(image_path).exists():
print(f"β Image file not found: {image_path}")
print("Please update the image_path variable with the correct path to your collage image.")
return
segments = splitter.split_collage(
image_path=image_path,
debug=True
)
print(f"\nπ Processing complete!")
print(f"Generated {len(segments)} separate images from the collage")
except Exception as e:
print(f"β Error processing image: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
|