Spaces:
Runtime error
Runtime error
Upload BLIPIntepret.py
Browse files- BLIPIntepret.py +10 -8
BLIPIntepret.py
CHANGED
|
@@ -7,14 +7,14 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 7 |
print(device)
|
| 8 |
|
| 9 |
def init_BLIP(device):
|
|
|
|
| 10 |
if device == 'cuda':
|
| 11 |
-
|
|
|
|
| 12 |
else:
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
"Salesforce/blip2-opt-2.7b", load_in_8bit= bit_load,torch_dtype=torch.float16, device_map = 'auto'
|
| 17 |
-
)
|
| 18 |
model.eval()
|
| 19 |
if torch.__version__ >= "2":
|
| 20 |
model = torch.compile(model)
|
|
@@ -33,8 +33,10 @@ def infer_BLIP2(model,processor,image,device):
|
|
| 33 |
"Question: What emotion does the person or animal in the image feel? Answer:",
|
| 34 |
]
|
| 35 |
for prompt in prompts:
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
generated_ids = model.generate(**inputs)
|
| 39 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 40 |
outputs+= prompt+generated_text+' '
|
|
|
|
| 7 |
print(device)
|
| 8 |
|
| 9 |
def init_BLIP(device):
|
| 10 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
| 11 |
if device == 'cuda':
|
| 12 |
+
model = Blip2ForConditionalGeneration.from_pretrained(
|
| 13 |
+
"Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16, device_map = 'auto')
|
| 14 |
else:
|
| 15 |
+
print('Using CPU model')
|
| 16 |
+
model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-opt-2.7b",device_map={"": device}, torch_dtype=torch.float32,low_cpu_mem_usage=True)
|
| 17 |
+
|
|
|
|
|
|
|
| 18 |
model.eval()
|
| 19 |
if torch.__version__ >= "2":
|
| 20 |
model = torch.compile(model)
|
|
|
|
| 33 |
"Question: What emotion does the person or animal in the image feel? Answer:",
|
| 34 |
]
|
| 35 |
for prompt in prompts:
|
| 36 |
+
if device == 'cuda':
|
| 37 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
|
| 38 |
+
else:
|
| 39 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt")
|
| 40 |
generated_ids = model.generate(**inputs)
|
| 41 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
| 42 |
outputs+= prompt+generated_text+' '
|