Spaces:
Runtime error
Runtime error
Commit
·
f9c83e1
1
Parent(s):
3a5accc
Upload darknet.py
Browse files- darknet.py +322 -0
darknet.py
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PyTorch implementation of Darknet
|
| 2 |
+
# This is a custom, hard-coded version of darknet with
|
| 3 |
+
# YOLOv3 implementation for openimages database. This
|
| 4 |
+
# was written to test viability of implementing YOLO
|
| 5 |
+
# for face detection followed by emotion / sentiment
|
| 6 |
+
# analysis.
|
| 7 |
+
#
|
| 8 |
+
# Configuration, weights and data are hardcoded.
|
| 9 |
+
# Additional options include, ability to create
|
| 10 |
+
# subset of data with faces exracted for labelling.
|
| 11 |
+
#
|
| 12 |
+
# Author : Saikiran Tharimena
|
| 13 |
+
# Co-Authors: Kjetil Marinius Sjulsen, Juan Carlos Calvet Lopez
|
| 14 |
+
# Project : Emotion / Sentiment Detection from news images
|
| 15 |
+
# Date : 12 September 2022
|
| 16 |
+
# Version : v0.1
|
| 17 |
+
#
|
| 18 |
+
# (C) Schibsted ASA
|
| 19 |
+
|
| 20 |
+
# Libraries
|
| 21 |
+
import torch
|
| 22 |
+
import torch.nn as nn
|
| 23 |
+
import torch.nn.functional as F
|
| 24 |
+
from torch.autograd import Variable
|
| 25 |
+
import numpy as np
|
| 26 |
+
from utils import *
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def parse_cfg(cfgfile):
|
| 30 |
+
"""
|
| 31 |
+
Takes a configuration file
|
| 32 |
+
|
| 33 |
+
Returns a list of blocks. Each blocks describes a block in the neural
|
| 34 |
+
network to be built. Block is represented as a dictionary in the list
|
| 35 |
+
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
file = open(cfgfile, 'r')
|
| 39 |
+
lines = file.read().split('\n') # store the lines in a list
|
| 40 |
+
lines = [x for x in lines if len(x) > 0] # get read of the empty lines
|
| 41 |
+
lines = [x for x in lines if x[0] != '#'] # get rid of comments
|
| 42 |
+
lines = [x.rstrip().lstrip() for x in lines] # get rid of fringe whitespaces
|
| 43 |
+
|
| 44 |
+
block = {}
|
| 45 |
+
blocks = []
|
| 46 |
+
|
| 47 |
+
for line in lines:
|
| 48 |
+
if line[0] == "[": # This marks the start of a new block
|
| 49 |
+
if len(block) != 0: # If block is not empty, implies it is storing values of previous block.
|
| 50 |
+
blocks.append(block) # add it the blocks list
|
| 51 |
+
block = {} # re-init the block
|
| 52 |
+
block["type"] = line[1:-1].rstrip()
|
| 53 |
+
else:
|
| 54 |
+
key,value = line.split("=")
|
| 55 |
+
block[key.rstrip()] = value.lstrip()
|
| 56 |
+
blocks.append(block)
|
| 57 |
+
|
| 58 |
+
return blocks
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class EmptyLayer(nn.Module):
|
| 62 |
+
def __init__(self):
|
| 63 |
+
super(EmptyLayer, self).__init__()
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class DetectionLayer(nn.Module):
|
| 67 |
+
def __init__(self, anchors):
|
| 68 |
+
super(DetectionLayer, self).__init__()
|
| 69 |
+
self.anchors = anchors
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def create_modules(blocks):
|
| 73 |
+
net_info = blocks[0] #Captures the information about the input and pre-processing
|
| 74 |
+
module_list = nn.ModuleList()
|
| 75 |
+
prev_filters = 3
|
| 76 |
+
output_filters = []
|
| 77 |
+
|
| 78 |
+
for index, x in enumerate(blocks[1:]):
|
| 79 |
+
module = nn.Sequential()
|
| 80 |
+
|
| 81 |
+
#check the type of block
|
| 82 |
+
#create a new module for the block
|
| 83 |
+
#append to module_list
|
| 84 |
+
|
| 85 |
+
#If it's a convolutional layer
|
| 86 |
+
if (x["type"] == "convolutional"):
|
| 87 |
+
#Get the info about the layer
|
| 88 |
+
activation = x["activation"]
|
| 89 |
+
try:
|
| 90 |
+
batch_normalize = int(x["batch_normalize"])
|
| 91 |
+
bias = False
|
| 92 |
+
except:
|
| 93 |
+
batch_normalize = 0
|
| 94 |
+
bias = True
|
| 95 |
+
|
| 96 |
+
filters= int(x["filters"])
|
| 97 |
+
padding = int(x["pad"])
|
| 98 |
+
kernel_size = int(x["size"])
|
| 99 |
+
stride = int(x["stride"])
|
| 100 |
+
|
| 101 |
+
if padding:
|
| 102 |
+
pad = (kernel_size - 1) // 2
|
| 103 |
+
else:
|
| 104 |
+
pad = 0
|
| 105 |
+
|
| 106 |
+
#Add the convolutional layer
|
| 107 |
+
conv = nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, bias = bias)
|
| 108 |
+
module.add_module("conv_{0}".format(index), conv)
|
| 109 |
+
|
| 110 |
+
#Add the Batch Norm Layer
|
| 111 |
+
if batch_normalize:
|
| 112 |
+
bn = nn.BatchNorm2d(filters)
|
| 113 |
+
module.add_module("batch_norm_{0}".format(index), bn)
|
| 114 |
+
|
| 115 |
+
#Check the activation.
|
| 116 |
+
#It is either Linear or a Leaky ReLU for YOLO
|
| 117 |
+
if activation == "leaky":
|
| 118 |
+
activn = nn.LeakyReLU(0.1, inplace = True)
|
| 119 |
+
module.add_module("leaky_{0}".format(index), activn)
|
| 120 |
+
|
| 121 |
+
#If it's an upsampling layer
|
| 122 |
+
#We use Bilinear2dUpsampling
|
| 123 |
+
elif (x["type"] == "upsample"):
|
| 124 |
+
stride = int(x["stride"])
|
| 125 |
+
upsample = nn.Upsample(scale_factor = 2, mode = "nearest")
|
| 126 |
+
module.add_module("upsample_{}".format(index), upsample)
|
| 127 |
+
|
| 128 |
+
#If it is a route layer
|
| 129 |
+
elif (x["type"] == "route"):
|
| 130 |
+
x["layers"] = x["layers"].split(',')
|
| 131 |
+
#Start of a route
|
| 132 |
+
start = int(x["layers"][0])
|
| 133 |
+
#end, if there exists one.
|
| 134 |
+
try:
|
| 135 |
+
end = int(x["layers"][1])
|
| 136 |
+
except:
|
| 137 |
+
end = 0
|
| 138 |
+
#Positive anotation
|
| 139 |
+
if start > 0:
|
| 140 |
+
start = start - index
|
| 141 |
+
if end > 0:
|
| 142 |
+
end = end - index
|
| 143 |
+
route = EmptyLayer()
|
| 144 |
+
module.add_module("route_{0}".format(index), route)
|
| 145 |
+
if end < 0:
|
| 146 |
+
filters = output_filters[index + start] + output_filters[index + end]
|
| 147 |
+
else:
|
| 148 |
+
filters= output_filters[index + start]
|
| 149 |
+
|
| 150 |
+
#shortcut corresponds to skip connection
|
| 151 |
+
elif x["type"] == "shortcut":
|
| 152 |
+
shortcut = EmptyLayer()
|
| 153 |
+
module.add_module("shortcut_{}".format(index), shortcut)
|
| 154 |
+
|
| 155 |
+
#Yolo is the detection layer
|
| 156 |
+
elif x["type"] == "yolo":
|
| 157 |
+
mask = x["mask"].split(",")
|
| 158 |
+
mask = [int(x) for x in mask]
|
| 159 |
+
|
| 160 |
+
anchors = x["anchors"].split(",")
|
| 161 |
+
anchors = [int(a) for a in anchors]
|
| 162 |
+
anchors = [(anchors[i], anchors[i+1]) for i in range(0, len(anchors),2)]
|
| 163 |
+
anchors = [anchors[i] for i in mask]
|
| 164 |
+
|
| 165 |
+
detection = DetectionLayer(anchors)
|
| 166 |
+
module.add_module("Detection_{}".format(index), detection)
|
| 167 |
+
|
| 168 |
+
module_list.append(module)
|
| 169 |
+
prev_filters = filters
|
| 170 |
+
output_filters.append(filters)
|
| 171 |
+
|
| 172 |
+
return (net_info, module_list)
|
| 173 |
+
|
| 174 |
+
class Darknet(nn.Module):
|
| 175 |
+
def __init__(self, cfgfile):
|
| 176 |
+
super(Darknet, self).__init__()
|
| 177 |
+
self.blocks = parse_cfg(cfgfile)
|
| 178 |
+
self.net_info, self.module_list = create_modules(self.blocks)
|
| 179 |
+
|
| 180 |
+
def forward(self, x, CUDA):
|
| 181 |
+
modules = self.blocks[1:]
|
| 182 |
+
outputs = {} #We cache the outputs for the route layer
|
| 183 |
+
|
| 184 |
+
write = 0
|
| 185 |
+
for i, module in enumerate(modules):
|
| 186 |
+
module_type = (module["type"])
|
| 187 |
+
|
| 188 |
+
if module_type == "convolutional" or module_type == "upsample":
|
| 189 |
+
x = self.module_list[i](x)
|
| 190 |
+
|
| 191 |
+
elif module_type == "route":
|
| 192 |
+
layers = module["layers"]
|
| 193 |
+
layers = [int(a) for a in layers]
|
| 194 |
+
|
| 195 |
+
if (layers[0]) > 0:
|
| 196 |
+
layers[0] = layers[0] - i
|
| 197 |
+
|
| 198 |
+
if len(layers) == 1:
|
| 199 |
+
x = outputs[i + (layers[0])]
|
| 200 |
+
|
| 201 |
+
else:
|
| 202 |
+
if (layers[1]) > 0:
|
| 203 |
+
layers[1] = layers[1] - i
|
| 204 |
+
|
| 205 |
+
map1 = outputs[i + layers[0]]
|
| 206 |
+
map2 = outputs[i + layers[1]]
|
| 207 |
+
x = torch.cat((map1, map2), 1)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
elif module_type == "shortcut":
|
| 211 |
+
from_ = int(module["from"])
|
| 212 |
+
x = outputs[i-1] + outputs[i+from_]
|
| 213 |
+
|
| 214 |
+
elif module_type == 'yolo':
|
| 215 |
+
anchors = self.module_list[i][0].anchors
|
| 216 |
+
#Get the input dimensions
|
| 217 |
+
inp_dim = int (self.net_info["height"])
|
| 218 |
+
|
| 219 |
+
#Get the number of classes
|
| 220 |
+
num_classes = int (module["classes"])
|
| 221 |
+
|
| 222 |
+
#Transform
|
| 223 |
+
x = x.data
|
| 224 |
+
x = predict_transform(x, inp_dim, anchors, num_classes, CUDA)
|
| 225 |
+
if not write: #if no collector has been intialised.
|
| 226 |
+
detections = x
|
| 227 |
+
write = 1
|
| 228 |
+
|
| 229 |
+
else:
|
| 230 |
+
detections = torch.cat((detections, x), 1)
|
| 231 |
+
|
| 232 |
+
outputs[i] = x
|
| 233 |
+
|
| 234 |
+
return detections
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def load_weights(self, weightfile):
|
| 238 |
+
#Open the weights file
|
| 239 |
+
fp = open(weightfile, "rb")
|
| 240 |
+
|
| 241 |
+
#The first 5 values are header information
|
| 242 |
+
# 1. Major version number
|
| 243 |
+
# 2. Minor Version Number
|
| 244 |
+
# 3. Subversion number
|
| 245 |
+
# 4,5. Images seen by the network (during training)
|
| 246 |
+
header = np.fromfile(fp, dtype = np.int32, count = 5)
|
| 247 |
+
self.header = torch.from_numpy(header)
|
| 248 |
+
self.seen = self.header[3]
|
| 249 |
+
|
| 250 |
+
weights = np.fromfile(fp, dtype = np.float32)
|
| 251 |
+
|
| 252 |
+
ptr = 0
|
| 253 |
+
for i in range(len(self.module_list)):
|
| 254 |
+
module_type = self.blocks[i + 1]["type"]
|
| 255 |
+
|
| 256 |
+
#If module_type is convolutional load weights
|
| 257 |
+
#Otherwise ignore.
|
| 258 |
+
|
| 259 |
+
if module_type == "convolutional":
|
| 260 |
+
model = self.module_list[i]
|
| 261 |
+
try:
|
| 262 |
+
batch_normalize = int(self.blocks[i+1]["batch_normalize"])
|
| 263 |
+
except:
|
| 264 |
+
batch_normalize = 0
|
| 265 |
+
|
| 266 |
+
conv = model[0]
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
if (batch_normalize):
|
| 270 |
+
bn = model[1]
|
| 271 |
+
|
| 272 |
+
#Get the number of weights of Batch Norm Layer
|
| 273 |
+
num_bn_biases = bn.bias.numel()
|
| 274 |
+
|
| 275 |
+
#Load the weights
|
| 276 |
+
bn_biases = torch.from_numpy(weights[ptr:ptr + num_bn_biases])
|
| 277 |
+
ptr += num_bn_biases
|
| 278 |
+
|
| 279 |
+
bn_weights = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
|
| 280 |
+
ptr += num_bn_biases
|
| 281 |
+
|
| 282 |
+
bn_running_mean = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
|
| 283 |
+
ptr += num_bn_biases
|
| 284 |
+
|
| 285 |
+
bn_running_var = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
|
| 286 |
+
ptr += num_bn_biases
|
| 287 |
+
|
| 288 |
+
#Cast the loaded weights into dims of model weights.
|
| 289 |
+
bn_biases = bn_biases.view_as(bn.bias.data)
|
| 290 |
+
bn_weights = bn_weights.view_as(bn.weight.data)
|
| 291 |
+
bn_running_mean = bn_running_mean.view_as(bn.running_mean)
|
| 292 |
+
bn_running_var = bn_running_var.view_as(bn.running_var)
|
| 293 |
+
|
| 294 |
+
#Copy the data to model
|
| 295 |
+
bn.bias.data.copy_(bn_biases)
|
| 296 |
+
bn.weight.data.copy_(bn_weights)
|
| 297 |
+
bn.running_mean.copy_(bn_running_mean)
|
| 298 |
+
bn.running_var.copy_(bn_running_var)
|
| 299 |
+
|
| 300 |
+
else:
|
| 301 |
+
#Number of biases
|
| 302 |
+
num_biases = conv.bias.numel()
|
| 303 |
+
|
| 304 |
+
#Load the weights
|
| 305 |
+
conv_biases = torch.from_numpy(weights[ptr: ptr + num_biases])
|
| 306 |
+
ptr = ptr + num_biases
|
| 307 |
+
|
| 308 |
+
#reshape the loaded weights according to the dims of the model weights
|
| 309 |
+
conv_biases = conv_biases.view_as(conv.bias.data)
|
| 310 |
+
|
| 311 |
+
#Finally copy the data
|
| 312 |
+
conv.bias.data.copy_(conv_biases)
|
| 313 |
+
|
| 314 |
+
#Let us load the weights for the Convolutional layers
|
| 315 |
+
num_weights = conv.weight.numel()
|
| 316 |
+
|
| 317 |
+
#Do the same as above for weights
|
| 318 |
+
conv_weights = torch.from_numpy(weights[ptr:ptr+num_weights])
|
| 319 |
+
ptr = ptr + num_weights
|
| 320 |
+
|
| 321 |
+
conv_weights = conv_weights.view_as(conv.weight.data)
|
| 322 |
+
conv.weight.data.copy_(conv_weights)
|