DKT-Depth / app.py
Daniellesry's picture
s
15aafd4
import os
import gradio as gr
import numpy as np
import torch
from PIL import Image
from loguru import logger
from tqdm import tqdm
from tools.common_utils import save_video
from dkt.pipelines.pipeline import DKTPipeline, ModelConfig
import cv2
import copy
import trimesh
from os.path import join
from tools.depth2pcd import depth2pcd
# from moge.model.v2 import MoGeModel
from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
import datetime
import tempfile
import time
#* better for bg: logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
NEGATIVE_PROMPT = ''
height = 480
width = 832
window_size = 21
# DKT_PIPELINE = DKTPipeline()
DKT_PIPELINE_14B = DKTPipeline(is14B=True)
# DKT_PIPELINE_14B_NORMAL = DKTPipeline(is14B=True, is_depth=False)
example_inputs = [
"examples/1.mp4",
"examples/7.mp4",
"examples/8.mp4",
"examples/39.mp4",
"examples/10.mp4",
"examples/30.mp4",
"examples/35.mp4",
"examples/40.mp4",
"examples/2.mp4",
"examples/4.mp4",
"examples/episode_48-camera_head.mp4",
"examples/input_20251128_121408.mp4",
"examples/input_20251128_122722.mp4",
"examples/5eaeaff52b23787a3dc3c610655a49d2.mp4",
"examples/9f2909760aff526070f169620ff38290.mp4",
"examples/18.mp4",
# "examples/27.mp4",
"examples/28.mp4",
"examples/73fc0b2a3af3474de27c7da0bfbf5faa.mp4",
"examples/episode_48-camera_third_view.mp4",
"examples/extra_5.mp4",
"examples/extra_9.mp4",
"examples/IMG_5703.MOV",
"examples/input_20251202_031811.mp4",
"examples/input_20251202_032007.mp4",
"examples/teaser_1.mp4",
"examples/3.mp4",
"examples/teaser_3.mp4",
"examples/teaser_7.mp4",
"examples/teaser_25.mp4",
]
def pmap_to_glb(point_map, valid_mask, frame) -> trimesh.Scene:
pts_3d = point_map[valid_mask] * np.array([-1, -1, 1])
pts_rgb = frame[valid_mask]
# Initialize a 3D scene
scene_3d = trimesh.Scene()
# Add point cloud data to the scene
point_cloud_data = trimesh.PointCloud(
vertices=pts_3d, colors=pts_rgb
)
scene_3d.add_geometry(point_cloud_data)
return scene_3d
def create_simple_glb_from_pointcloud(points, colors, glb_filename):
try:
if len(points) == 0:
logger.warning(f"No valid points to create GLB for {glb_filename}")
return False
if colors is not None:
# logger.info(f"Adding colors to GLB: shape={colors.shape}, range=[{colors.min():.3f}, {colors.max():.3f}]")
pts_rgb = colors
else:
logger.info("No colors provided, adding default white colors")
pts_rgb = np.ones((len(points), 3))
valid_mask = np.ones(len(points), dtype=bool)
scene_3d = pmap_to_glb(points, valid_mask, pts_rgb)
scene_3d.export(glb_filename)
# logger.info(f"Saved GLB file using trimesh: {glb_filename}")
return True
except Exception as e:
logger.error(f"Error creating GLB from pointcloud using trimesh: {str(e)}")
return False
def process_video(
video_file,
model_size,
num_inference_steps,
overlap
):
global height
global width
global window_size
global DKT_PIPELINE_14B
global DKT_PIPELINE
if model_size == "14B":
logger.info(f'14B model is chosen')
pipeline = DKT_PIPELINE_14B
elif model_size == "1.3B":
logger.info(f'1.3B model is chosen')
pipeline = DKT_PIPELINE
else:
raise ValueError(f"Invalid model size: {model_size}")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
start_time = time.time()
print(f"[1] Starting pipeline...")
try:
prediction_result = pipeline(
video_file,
negative_prompt=NEGATIVE_PROMPT,
height=height,
width=width,
num_inference_steps=num_inference_steps,
overlap=overlap,
return_rgb=True,
get_moge_intrinsics=False
)
print(f"[2] Pipeline done, keys: {prediction_result.keys()}")
except Exception as e:
print(f"[ERROR] Pipeline failed: {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
raise
end_time = time.time()
spend_time = end_time - start_time
print(f"[3] Pipeline time: {spend_time:.2f}s")
logger.info(f"pipeline spend time: {spend_time:.2f} seconds for depth prediction")
#* save depth predictions video
output_filename = f"output_{timestamp}.mp4"
output_path = os.path.join(cur_save_dir, output_filename)
cap = cv2.VideoCapture(video_file)
input_fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
print(f"[4] Saving video, fps={input_fps}")
save_video(prediction_result['colored_depth_map'], output_path, fps=input_fps, quality=8)
print(f"[5] Video saved: {output_path}")
return output_path
# # 点云可视化相关代码已注释
# #* vis pc
#
# frame_length = len(prediction_result['rgb_frames'])
# vis_pc_num = 4
# indices = np.linspace(0, frame_length-1, vis_pc_num)
# indices = np.round(indices).astype(np.int32)
#
#
# try:
# glb_files = []
# print(f"selective indices: {indices}")
#
# if prediction_result['moge_mask'].sum() == 0 :
# raise Exception("No valid points to create GLB for")
#
#
# pc_start_time = time.time()
# pcds = DKT_PIPELINE.prediction2pc_v3(prediction_result['depth_map'],
# prediction_result['rgb_frames'], indices,
# prediction_result['scale'], prediction_result['shift'], prediction_result['moge_intrinsics'],
# prediction_result['moge_mask'], return_pcd=True)
#
# pc_end_time = time.time()
# pc_spend_time = pc_end_time - pc_start_time
# print(f"prediction2pc_v2 spend time: {pc_spend_time:.2f} seconds for point cloud extraction, len(pcds): {len(pcds)}")
#
#
# for idx, pcd in enumerate(pcds):
#
# # points = np.asarray(pcd.points)
# # colors = np.asarray(pcd.colors) if pcd.has_colors() else None
#
# points = pcd['point']
# colors = pcd['color']
#
# logger.info(f'points:{points.shape} ')
# print(f'point:{points.shape}')
# if points.shape[0] == 0:
# continue
#
#
# points[:, 2] = -points[:, 2]
# points[:, 0] = -points[:, 0]
#
#
# glb_filename = os.path.join(cur_save_dir, f'{timestamp}_{idx:02d}.glb')
# success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
# if not success:
# logger.warning(f"Failed to save GLB file: {glb_filename}")
# print(f"Failed to save GLB file: {glb_filename}")
#
# glb_files.append(glb_filename)
# except Exception as e :
# # logger.info(f" len(pcd):{len(pcds)},idx:{idx}, points.shape:{points.shape} e: {e}")
# # print(f"len(pcd):{len(pcds)}, idx:{idx}, points.shape:{points.shape}, e: {e}, ")
# print(e)
#
# return output_path, glb_files
#* gradio creation and initialization
css = """
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
.tabs button.selected {
font-size: 20px !important;
color: crimson !important;
}
h1 {
text-align: center;
display: block;
}
h2 {
text-align: center;
display: block;
}
h3 {
text-align: center;
display: block;
}
.md_feedback li {
margin-bottom: 0px !important;
}
"""
head_html = """
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-1FWSVCGZTG');
</script>
"""
with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
# gr.Markdown(title, elem_classes=["title"])
gr.Markdown(
"""
# Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation
<p align="center">
<a title="Website" href="https://daniellli.github.io/projects/DKT/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="Github" href="https://github.com/Daniellli/DKT" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Daniellli/DKT?style=social" alt="badge-github-stars">
</a>
<a title="Social" href="https://x.com/xshocng1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
"""
)
# gr.Markdown(description, elem_classes=["description"])
# gr.Markdown("### Video Processing Demo", elem_classes=["description"])
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video", elem_id='video-display-input')
model_size = gr.Radio(
# choices=["1.3B", "14B"],
choices=["14B"],
value="14B",
label="Model Size"
)
with gr.Accordion("Advanced Parameters", open=False):
num_inference_steps = gr.Slider(
minimum=1, maximum=50, value=5, step=1,
label="Number of Inference Steps"
)
overlap = gr.Slider(
minimum=1, maximum=20, value=3, step=1,
label="Overlap"
)
submit = gr.Button(value="Compute Depth", variant="primary")
with gr.Column():
output_video = gr.Video(
label="Depth Outputs",
elem_id='video-display-output',
autoplay=True
)
vis_video = gr.Video(
label="Visualization Video",
visible=False,
autoplay=True
)
# # 点云可视化相关 UI 已注释
# with gr.Row():
# gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
#
# with gr.Row(equal_height=True):
# with gr.Column(scale=1):
# output_point_map0 = gr.Model3D(
# label="Point Cloud Key Frame 1",
# clear_color=[1.0, 1.0, 1.0, 1.0],
# interactive=False,
# )
# with gr.Column(scale=1):
# output_point_map1 = gr.Model3D(
# label="Point Cloud Key Frame 2",
# clear_color=[1.0, 1.0, 1.0, 1.0],
# interactive=False
# )
#
#
# with gr.Row(equal_height=True):
#
# with gr.Column(scale=1):
# output_point_map2 = gr.Model3D(
# label="Point Cloud Key Frame 3",
# clear_color=[1.0, 1.0, 1.0, 1.0],
# interactive=False
# )
# with gr.Column(scale=1):
# output_point_map3 = gr.Model3D(
# label="Point Cloud Key Frame 4",
# clear_color=[1.0, 1.0, 1.0, 1.0],
# interactive=False
# )
def on_submit(video_file, model_size, num_inference_steps, overlap):
logger.info('on_submit is calling')
if video_file is None:
return None, None
try:
start_time = time.time()
output_path = process_video(
video_file, model_size, num_inference_steps, overlap
)
spend_time = time.time() - start_time
logger.info(f"Total spend time in on_submit: {spend_time:.2f} seconds")
print(f"Total spend time in on_submit: {spend_time:.2f} seconds")
if output_path is None:
return None, None
# # 点云可视化相关代码已注释
# model3d_outputs = [None] * 4
# if glb_files and len(glb_files) !=0 :
# for i, glb_file in enumerate(glb_files[:4]):
# if os.path.exists(glb_file):
# model3d_outputs[i] = glb_file
return output_path, None
except Exception as e:
logger.error(e)
return None, None
submit.click(
on_submit,
inputs=[
input_video, model_size, num_inference_steps, overlap
],
outputs=[
output_video, vis_video
# output_point_map0, output_point_map1, output_point_map2, output_point_map3 # 点云可视化已注释
]
)
def on_example_submit(video_file):
"""Wrapper function for examples with default parameters"""
return on_submit(video_file, "14B", 5, 3)
examples = gr.Examples(
examples=example_inputs,
inputs=[input_video],
outputs=[
output_video, vis_video
# output_point_map0, output_point_map1, output_point_map2, output_point_map3 # 点云可视化已注释
],
fn=on_example_submit,
examples_per_page=36,
cache_examples=False
)
if __name__ == '__main__':
#* main code, model and moge model initialization
#* ....!!
demo.queue().launch()