Spaces:
Runtime error
Runtime error
anonymous
commited on
Commit
·
4fcfd85
1
Parent(s):
fd216ce
add controlnet
Browse files- ControlNet/ldm/data/__init__.py +0 -0
- ControlNet/ldm/data/util.py +24 -0
- ControlNet/ldm/models/autoencoder.py +219 -0
- ControlNet/ldm/models/diffusion/__init__.py +0 -0
- ControlNet/ldm/models/diffusion/ddim.py +336 -0
- ControlNet/ldm/models/diffusion/ddpm.py +1797 -0
- ControlNet/ldm/models/diffusion/dpm_solver/__init__.py +1 -0
- ControlNet/ldm/models/diffusion/dpm_solver/dpm_solver.py +1154 -0
- ControlNet/ldm/models/diffusion/dpm_solver/sampler.py +87 -0
- ControlNet/ldm/models/diffusion/plms.py +244 -0
- ControlNet/ldm/models/diffusion/sampling_util.py +22 -0
ControlNet/ldm/data/__init__.py
ADDED
|
File without changes
|
ControlNet/ldm/data/util.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from ldm.modules.midas.api import load_midas_transform
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class AddMiDaS(object):
|
| 7 |
+
def __init__(self, model_type):
|
| 8 |
+
super().__init__()
|
| 9 |
+
self.transform = load_midas_transform(model_type)
|
| 10 |
+
|
| 11 |
+
def pt2np(self, x):
|
| 12 |
+
x = ((x + 1.0) * .5).detach().cpu().numpy()
|
| 13 |
+
return x
|
| 14 |
+
|
| 15 |
+
def np2pt(self, x):
|
| 16 |
+
x = torch.from_numpy(x) * 2 - 1.
|
| 17 |
+
return x
|
| 18 |
+
|
| 19 |
+
def __call__(self, sample):
|
| 20 |
+
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
| 21 |
+
x = self.pt2np(sample['jpg'])
|
| 22 |
+
x = self.transform({"image": x})["image"]
|
| 23 |
+
sample['midas_in'] = x
|
| 24 |
+
return sample
|
ControlNet/ldm/models/autoencoder.py
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import pytorch_lightning as pl
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from contextlib import contextmanager
|
| 5 |
+
|
| 6 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
| 7 |
+
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
| 8 |
+
|
| 9 |
+
from ldm.util import instantiate_from_config
|
| 10 |
+
from ldm.modules.ema import LitEma
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class AutoencoderKL(pl.LightningModule):
|
| 14 |
+
def __init__(self,
|
| 15 |
+
ddconfig,
|
| 16 |
+
lossconfig,
|
| 17 |
+
embed_dim,
|
| 18 |
+
ckpt_path=None,
|
| 19 |
+
ignore_keys=[],
|
| 20 |
+
image_key="image",
|
| 21 |
+
colorize_nlabels=None,
|
| 22 |
+
monitor=None,
|
| 23 |
+
ema_decay=None,
|
| 24 |
+
learn_logvar=False
|
| 25 |
+
):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.learn_logvar = learn_logvar
|
| 28 |
+
self.image_key = image_key
|
| 29 |
+
self.encoder = Encoder(**ddconfig)
|
| 30 |
+
self.decoder = Decoder(**ddconfig)
|
| 31 |
+
self.loss = instantiate_from_config(lossconfig)
|
| 32 |
+
assert ddconfig["double_z"]
|
| 33 |
+
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
| 34 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
| 35 |
+
self.embed_dim = embed_dim
|
| 36 |
+
if colorize_nlabels is not None:
|
| 37 |
+
assert type(colorize_nlabels)==int
|
| 38 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
| 39 |
+
if monitor is not None:
|
| 40 |
+
self.monitor = monitor
|
| 41 |
+
|
| 42 |
+
self.use_ema = ema_decay is not None
|
| 43 |
+
if self.use_ema:
|
| 44 |
+
self.ema_decay = ema_decay
|
| 45 |
+
assert 0. < ema_decay < 1.
|
| 46 |
+
self.model_ema = LitEma(self, decay=ema_decay)
|
| 47 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 48 |
+
|
| 49 |
+
if ckpt_path is not None:
|
| 50 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
| 51 |
+
|
| 52 |
+
def init_from_ckpt(self, path, ignore_keys=list()):
|
| 53 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
| 54 |
+
keys = list(sd.keys())
|
| 55 |
+
for k in keys:
|
| 56 |
+
for ik in ignore_keys:
|
| 57 |
+
if k.startswith(ik):
|
| 58 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 59 |
+
del sd[k]
|
| 60 |
+
self.load_state_dict(sd, strict=False)
|
| 61 |
+
print(f"Restored from {path}")
|
| 62 |
+
|
| 63 |
+
@contextmanager
|
| 64 |
+
def ema_scope(self, context=None):
|
| 65 |
+
if self.use_ema:
|
| 66 |
+
self.model_ema.store(self.parameters())
|
| 67 |
+
self.model_ema.copy_to(self)
|
| 68 |
+
if context is not None:
|
| 69 |
+
print(f"{context}: Switched to EMA weights")
|
| 70 |
+
try:
|
| 71 |
+
yield None
|
| 72 |
+
finally:
|
| 73 |
+
if self.use_ema:
|
| 74 |
+
self.model_ema.restore(self.parameters())
|
| 75 |
+
if context is not None:
|
| 76 |
+
print(f"{context}: Restored training weights")
|
| 77 |
+
|
| 78 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 79 |
+
if self.use_ema:
|
| 80 |
+
self.model_ema(self)
|
| 81 |
+
|
| 82 |
+
def encode(self, x):
|
| 83 |
+
h = self.encoder(x)
|
| 84 |
+
moments = self.quant_conv(h)
|
| 85 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 86 |
+
return posterior
|
| 87 |
+
|
| 88 |
+
def decode(self, z):
|
| 89 |
+
z = self.post_quant_conv(z)
|
| 90 |
+
dec = self.decoder(z)
|
| 91 |
+
return dec
|
| 92 |
+
|
| 93 |
+
def forward(self, input, sample_posterior=True):
|
| 94 |
+
posterior = self.encode(input)
|
| 95 |
+
if sample_posterior:
|
| 96 |
+
z = posterior.sample()
|
| 97 |
+
else:
|
| 98 |
+
z = posterior.mode()
|
| 99 |
+
dec = self.decode(z)
|
| 100 |
+
return dec, posterior
|
| 101 |
+
|
| 102 |
+
def get_input(self, batch, k):
|
| 103 |
+
x = batch[k]
|
| 104 |
+
if len(x.shape) == 3:
|
| 105 |
+
x = x[..., None]
|
| 106 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
| 107 |
+
return x
|
| 108 |
+
|
| 109 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
| 110 |
+
inputs = self.get_input(batch, self.image_key)
|
| 111 |
+
reconstructions, posterior = self(inputs)
|
| 112 |
+
|
| 113 |
+
if optimizer_idx == 0:
|
| 114 |
+
# train encoder+decoder+logvar
|
| 115 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 116 |
+
last_layer=self.get_last_layer(), split="train")
|
| 117 |
+
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 118 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 119 |
+
return aeloss
|
| 120 |
+
|
| 121 |
+
if optimizer_idx == 1:
|
| 122 |
+
# train the discriminator
|
| 123 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
| 124 |
+
last_layer=self.get_last_layer(), split="train")
|
| 125 |
+
|
| 126 |
+
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
| 127 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
| 128 |
+
return discloss
|
| 129 |
+
|
| 130 |
+
def validation_step(self, batch, batch_idx):
|
| 131 |
+
log_dict = self._validation_step(batch, batch_idx)
|
| 132 |
+
with self.ema_scope():
|
| 133 |
+
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
|
| 134 |
+
return log_dict
|
| 135 |
+
|
| 136 |
+
def _validation_step(self, batch, batch_idx, postfix=""):
|
| 137 |
+
inputs = self.get_input(batch, self.image_key)
|
| 138 |
+
reconstructions, posterior = self(inputs)
|
| 139 |
+
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
| 140 |
+
last_layer=self.get_last_layer(), split="val"+postfix)
|
| 141 |
+
|
| 142 |
+
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
| 143 |
+
last_layer=self.get_last_layer(), split="val"+postfix)
|
| 144 |
+
|
| 145 |
+
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
| 146 |
+
self.log_dict(log_dict_ae)
|
| 147 |
+
self.log_dict(log_dict_disc)
|
| 148 |
+
return self.log_dict
|
| 149 |
+
|
| 150 |
+
def configure_optimizers(self):
|
| 151 |
+
lr = self.learning_rate
|
| 152 |
+
ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
|
| 153 |
+
self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
|
| 154 |
+
if self.learn_logvar:
|
| 155 |
+
print(f"{self.__class__.__name__}: Learning logvar")
|
| 156 |
+
ae_params_list.append(self.loss.logvar)
|
| 157 |
+
opt_ae = torch.optim.Adam(ae_params_list,
|
| 158 |
+
lr=lr, betas=(0.5, 0.9))
|
| 159 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
| 160 |
+
lr=lr, betas=(0.5, 0.9))
|
| 161 |
+
return [opt_ae, opt_disc], []
|
| 162 |
+
|
| 163 |
+
def get_last_layer(self):
|
| 164 |
+
return self.decoder.conv_out.weight
|
| 165 |
+
|
| 166 |
+
@torch.no_grad()
|
| 167 |
+
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
| 168 |
+
log = dict()
|
| 169 |
+
x = self.get_input(batch, self.image_key)
|
| 170 |
+
x = x.to(self.device)
|
| 171 |
+
if not only_inputs:
|
| 172 |
+
xrec, posterior = self(x)
|
| 173 |
+
if x.shape[1] > 3:
|
| 174 |
+
# colorize with random projection
|
| 175 |
+
assert xrec.shape[1] > 3
|
| 176 |
+
x = self.to_rgb(x)
|
| 177 |
+
xrec = self.to_rgb(xrec)
|
| 178 |
+
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
| 179 |
+
log["reconstructions"] = xrec
|
| 180 |
+
if log_ema or self.use_ema:
|
| 181 |
+
with self.ema_scope():
|
| 182 |
+
xrec_ema, posterior_ema = self(x)
|
| 183 |
+
if x.shape[1] > 3:
|
| 184 |
+
# colorize with random projection
|
| 185 |
+
assert xrec_ema.shape[1] > 3
|
| 186 |
+
xrec_ema = self.to_rgb(xrec_ema)
|
| 187 |
+
log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
|
| 188 |
+
log["reconstructions_ema"] = xrec_ema
|
| 189 |
+
log["inputs"] = x
|
| 190 |
+
return log
|
| 191 |
+
|
| 192 |
+
def to_rgb(self, x):
|
| 193 |
+
assert self.image_key == "segmentation"
|
| 194 |
+
if not hasattr(self, "colorize"):
|
| 195 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
| 196 |
+
x = F.conv2d(x, weight=self.colorize)
|
| 197 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
| 198 |
+
return x
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
class IdentityFirstStage(torch.nn.Module):
|
| 202 |
+
def __init__(self, *args, vq_interface=False, **kwargs):
|
| 203 |
+
self.vq_interface = vq_interface
|
| 204 |
+
super().__init__()
|
| 205 |
+
|
| 206 |
+
def encode(self, x, *args, **kwargs):
|
| 207 |
+
return x
|
| 208 |
+
|
| 209 |
+
def decode(self, x, *args, **kwargs):
|
| 210 |
+
return x
|
| 211 |
+
|
| 212 |
+
def quantize(self, x, *args, **kwargs):
|
| 213 |
+
if self.vq_interface:
|
| 214 |
+
return x, None, [None, None, None]
|
| 215 |
+
return x
|
| 216 |
+
|
| 217 |
+
def forward(self, x, *args, **kwargs):
|
| 218 |
+
return x
|
| 219 |
+
|
ControlNet/ldm/models/diffusion/__init__.py
ADDED
|
File without changes
|
ControlNet/ldm/models/diffusion/ddim.py
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class DDIMSampler(object):
|
| 11 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.model = model
|
| 14 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 15 |
+
self.schedule = schedule
|
| 16 |
+
|
| 17 |
+
def register_buffer(self, name, attr):
|
| 18 |
+
if type(attr) == torch.Tensor:
|
| 19 |
+
if attr.device != torch.device("cuda"):
|
| 20 |
+
attr = attr.to(torch.device("cuda"))
|
| 21 |
+
setattr(self, name, attr)
|
| 22 |
+
|
| 23 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
| 24 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
| 25 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
| 26 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 27 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
| 28 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 29 |
+
|
| 30 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
| 31 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 32 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
| 33 |
+
|
| 34 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 35 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
| 36 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
| 37 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
| 38 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
| 39 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
| 40 |
+
|
| 41 |
+
# ddim sampling parameters
|
| 42 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
| 43 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 44 |
+
eta=ddim_eta,verbose=verbose)
|
| 45 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
| 46 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
| 47 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
| 48 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
| 49 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 50 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
| 51 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
| 52 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
| 53 |
+
|
| 54 |
+
@torch.no_grad()
|
| 55 |
+
def sample(self,
|
| 56 |
+
S,
|
| 57 |
+
batch_size,
|
| 58 |
+
shape,
|
| 59 |
+
conditioning=None,
|
| 60 |
+
callback=None,
|
| 61 |
+
normals_sequence=None,
|
| 62 |
+
img_callback=None,
|
| 63 |
+
quantize_x0=False,
|
| 64 |
+
eta=0.,
|
| 65 |
+
mask=None,
|
| 66 |
+
x0=None,
|
| 67 |
+
temperature=1.,
|
| 68 |
+
noise_dropout=0.,
|
| 69 |
+
score_corrector=None,
|
| 70 |
+
corrector_kwargs=None,
|
| 71 |
+
verbose=True,
|
| 72 |
+
x_T=None,
|
| 73 |
+
log_every_t=100,
|
| 74 |
+
unconditional_guidance_scale=1.,
|
| 75 |
+
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 76 |
+
dynamic_threshold=None,
|
| 77 |
+
ucg_schedule=None,
|
| 78 |
+
**kwargs
|
| 79 |
+
):
|
| 80 |
+
if conditioning is not None:
|
| 81 |
+
if isinstance(conditioning, dict):
|
| 82 |
+
ctmp = conditioning[list(conditioning.keys())[0]]
|
| 83 |
+
while isinstance(ctmp, list): ctmp = ctmp[0]
|
| 84 |
+
cbs = ctmp.shape[0]
|
| 85 |
+
if cbs != batch_size:
|
| 86 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 87 |
+
|
| 88 |
+
elif isinstance(conditioning, list):
|
| 89 |
+
for ctmp in conditioning:
|
| 90 |
+
if ctmp.shape[0] != batch_size:
|
| 91 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 92 |
+
|
| 93 |
+
else:
|
| 94 |
+
if conditioning.shape[0] != batch_size:
|
| 95 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 96 |
+
|
| 97 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
| 98 |
+
# sampling
|
| 99 |
+
C, H, W = shape
|
| 100 |
+
size = (batch_size, C, H, W)
|
| 101 |
+
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
| 102 |
+
|
| 103 |
+
samples, intermediates = self.ddim_sampling(conditioning, size,
|
| 104 |
+
callback=callback,
|
| 105 |
+
img_callback=img_callback,
|
| 106 |
+
quantize_denoised=quantize_x0,
|
| 107 |
+
mask=mask, x0=x0,
|
| 108 |
+
ddim_use_original_steps=False,
|
| 109 |
+
noise_dropout=noise_dropout,
|
| 110 |
+
temperature=temperature,
|
| 111 |
+
score_corrector=score_corrector,
|
| 112 |
+
corrector_kwargs=corrector_kwargs,
|
| 113 |
+
x_T=x_T,
|
| 114 |
+
log_every_t=log_every_t,
|
| 115 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 116 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 117 |
+
dynamic_threshold=dynamic_threshold,
|
| 118 |
+
ucg_schedule=ucg_schedule
|
| 119 |
+
)
|
| 120 |
+
return samples, intermediates
|
| 121 |
+
|
| 122 |
+
@torch.no_grad()
|
| 123 |
+
def ddim_sampling(self, cond, shape,
|
| 124 |
+
x_T=None, ddim_use_original_steps=False,
|
| 125 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
| 126 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
| 127 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 128 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
| 129 |
+
ucg_schedule=None):
|
| 130 |
+
device = self.model.betas.device
|
| 131 |
+
b = shape[0]
|
| 132 |
+
if x_T is None:
|
| 133 |
+
img = torch.randn(shape, device=device)
|
| 134 |
+
else:
|
| 135 |
+
img = x_T
|
| 136 |
+
|
| 137 |
+
if timesteps is None:
|
| 138 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
| 139 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 140 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
| 141 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 142 |
+
|
| 143 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
| 144 |
+
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
| 145 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 146 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 147 |
+
|
| 148 |
+
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
| 149 |
+
|
| 150 |
+
for i, step in enumerate(iterator):
|
| 151 |
+
index = total_steps - i - 1
|
| 152 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 153 |
+
|
| 154 |
+
if mask is not None:
|
| 155 |
+
assert x0 is not None
|
| 156 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
| 157 |
+
img = img_orig * mask + (1. - mask) * img
|
| 158 |
+
|
| 159 |
+
if ucg_schedule is not None:
|
| 160 |
+
assert len(ucg_schedule) == len(time_range)
|
| 161 |
+
unconditional_guidance_scale = ucg_schedule[i]
|
| 162 |
+
|
| 163 |
+
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
| 164 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
| 165 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
| 166 |
+
corrector_kwargs=corrector_kwargs,
|
| 167 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 168 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 169 |
+
dynamic_threshold=dynamic_threshold)
|
| 170 |
+
img, pred_x0 = outs
|
| 171 |
+
if callback: callback(i)
|
| 172 |
+
if img_callback: img_callback(pred_x0, i)
|
| 173 |
+
|
| 174 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 175 |
+
intermediates['x_inter'].append(img)
|
| 176 |
+
intermediates['pred_x0'].append(pred_x0)
|
| 177 |
+
|
| 178 |
+
return img, intermediates
|
| 179 |
+
|
| 180 |
+
@torch.no_grad()
|
| 181 |
+
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 182 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 183 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
| 184 |
+
dynamic_threshold=None):
|
| 185 |
+
b, *_, device = *x.shape, x.device
|
| 186 |
+
|
| 187 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 188 |
+
model_output = self.model.apply_model(x, t, c)
|
| 189 |
+
else:
|
| 190 |
+
x_in = torch.cat([x] * 2)
|
| 191 |
+
t_in = torch.cat([t] * 2)
|
| 192 |
+
if isinstance(c, dict):
|
| 193 |
+
assert isinstance(unconditional_conditioning, dict)
|
| 194 |
+
c_in = dict()
|
| 195 |
+
for k in c:
|
| 196 |
+
if isinstance(c[k], list):
|
| 197 |
+
c_in[k] = [torch.cat([
|
| 198 |
+
unconditional_conditioning[k][i],
|
| 199 |
+
c[k][i]]) for i in range(len(c[k]))]
|
| 200 |
+
else:
|
| 201 |
+
c_in[k] = torch.cat([
|
| 202 |
+
unconditional_conditioning[k],
|
| 203 |
+
c[k]])
|
| 204 |
+
elif isinstance(c, list):
|
| 205 |
+
c_in = list()
|
| 206 |
+
assert isinstance(unconditional_conditioning, list)
|
| 207 |
+
for i in range(len(c)):
|
| 208 |
+
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
| 209 |
+
else:
|
| 210 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
| 211 |
+
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
| 212 |
+
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
| 213 |
+
|
| 214 |
+
if self.model.parameterization == "v":
|
| 215 |
+
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
| 216 |
+
else:
|
| 217 |
+
e_t = model_output
|
| 218 |
+
|
| 219 |
+
if score_corrector is not None:
|
| 220 |
+
assert self.model.parameterization == "eps", 'not implemented'
|
| 221 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
| 222 |
+
|
| 223 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 224 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
| 225 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
| 226 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
| 227 |
+
# select parameters corresponding to the currently considered timestep
|
| 228 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
| 229 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
| 230 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
| 231 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
| 232 |
+
|
| 233 |
+
# current prediction for x_0
|
| 234 |
+
if self.model.parameterization != "v":
|
| 235 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 236 |
+
else:
|
| 237 |
+
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
| 238 |
+
|
| 239 |
+
if quantize_denoised:
|
| 240 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 241 |
+
|
| 242 |
+
if dynamic_threshold is not None:
|
| 243 |
+
raise NotImplementedError()
|
| 244 |
+
|
| 245 |
+
# direction pointing to x_t
|
| 246 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
| 247 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 248 |
+
if noise_dropout > 0.:
|
| 249 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 250 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
| 251 |
+
return x_prev, pred_x0
|
| 252 |
+
|
| 253 |
+
@torch.no_grad()
|
| 254 |
+
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
| 255 |
+
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
| 256 |
+
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
| 257 |
+
|
| 258 |
+
assert t_enc <= num_reference_steps
|
| 259 |
+
num_steps = t_enc
|
| 260 |
+
|
| 261 |
+
if use_original_steps:
|
| 262 |
+
alphas_next = self.alphas_cumprod[:num_steps]
|
| 263 |
+
alphas = self.alphas_cumprod_prev[:num_steps]
|
| 264 |
+
else:
|
| 265 |
+
alphas_next = self.ddim_alphas[:num_steps]
|
| 266 |
+
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
| 267 |
+
|
| 268 |
+
x_next = x0
|
| 269 |
+
intermediates = []
|
| 270 |
+
inter_steps = []
|
| 271 |
+
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
| 272 |
+
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
| 273 |
+
if unconditional_guidance_scale == 1.:
|
| 274 |
+
noise_pred = self.model.apply_model(x_next, t, c)
|
| 275 |
+
else:
|
| 276 |
+
assert unconditional_conditioning is not None
|
| 277 |
+
e_t_uncond, noise_pred = torch.chunk(
|
| 278 |
+
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
| 279 |
+
torch.cat((unconditional_conditioning, c))), 2)
|
| 280 |
+
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
| 281 |
+
|
| 282 |
+
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
| 283 |
+
weighted_noise_pred = alphas_next[i].sqrt() * (
|
| 284 |
+
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
| 285 |
+
x_next = xt_weighted + weighted_noise_pred
|
| 286 |
+
if return_intermediates and i % (
|
| 287 |
+
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
| 288 |
+
intermediates.append(x_next)
|
| 289 |
+
inter_steps.append(i)
|
| 290 |
+
elif return_intermediates and i >= num_steps - 2:
|
| 291 |
+
intermediates.append(x_next)
|
| 292 |
+
inter_steps.append(i)
|
| 293 |
+
if callback: callback(i)
|
| 294 |
+
|
| 295 |
+
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
| 296 |
+
if return_intermediates:
|
| 297 |
+
out.update({'intermediates': intermediates})
|
| 298 |
+
return x_next, out
|
| 299 |
+
|
| 300 |
+
@torch.no_grad()
|
| 301 |
+
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
| 302 |
+
# fast, but does not allow for exact reconstruction
|
| 303 |
+
# t serves as an index to gather the correct alphas
|
| 304 |
+
if use_original_steps:
|
| 305 |
+
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
| 306 |
+
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
| 307 |
+
else:
|
| 308 |
+
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
| 309 |
+
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
| 310 |
+
|
| 311 |
+
if noise is None:
|
| 312 |
+
noise = torch.randn_like(x0)
|
| 313 |
+
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
| 314 |
+
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
| 315 |
+
|
| 316 |
+
@torch.no_grad()
|
| 317 |
+
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
| 318 |
+
use_original_steps=False, callback=None):
|
| 319 |
+
|
| 320 |
+
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
| 321 |
+
timesteps = timesteps[:t_start]
|
| 322 |
+
|
| 323 |
+
time_range = np.flip(timesteps)
|
| 324 |
+
total_steps = timesteps.shape[0]
|
| 325 |
+
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
| 326 |
+
|
| 327 |
+
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
| 328 |
+
x_dec = x_latent
|
| 329 |
+
for i, step in enumerate(iterator):
|
| 330 |
+
index = total_steps - i - 1
|
| 331 |
+
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
| 332 |
+
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
| 333 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 334 |
+
unconditional_conditioning=unconditional_conditioning)
|
| 335 |
+
if callback: callback(i)
|
| 336 |
+
return x_dec
|
ControlNet/ldm/models/diffusion/ddpm.py
ADDED
|
@@ -0,0 +1,1797 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
wild mixture of
|
| 3 |
+
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
| 4 |
+
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
| 5 |
+
https://github.com/CompVis/taming-transformers
|
| 6 |
+
-- merci
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import numpy as np
|
| 12 |
+
import pytorch_lightning as pl
|
| 13 |
+
from torch.optim.lr_scheduler import LambdaLR
|
| 14 |
+
from einops import rearrange, repeat
|
| 15 |
+
from contextlib import contextmanager, nullcontext
|
| 16 |
+
from functools import partial
|
| 17 |
+
import itertools
|
| 18 |
+
from tqdm import tqdm
|
| 19 |
+
from torchvision.utils import make_grid
|
| 20 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
| 21 |
+
from omegaconf import ListConfig
|
| 22 |
+
|
| 23 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
| 24 |
+
from ldm.modules.ema import LitEma
|
| 25 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
| 26 |
+
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
|
| 27 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
| 28 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
| 32 |
+
'crossattn': 'c_crossattn',
|
| 33 |
+
'adm': 'y'}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def disabled_train(self, mode=True):
|
| 37 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
| 38 |
+
does not change anymore."""
|
| 39 |
+
return self
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def uniform_on_device(r1, r2, shape, device):
|
| 43 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class DDPM(pl.LightningModule):
|
| 47 |
+
# classic DDPM with Gaussian diffusion, in image space
|
| 48 |
+
def __init__(self,
|
| 49 |
+
unet_config,
|
| 50 |
+
timesteps=1000,
|
| 51 |
+
beta_schedule="linear",
|
| 52 |
+
loss_type="l2",
|
| 53 |
+
ckpt_path=None,
|
| 54 |
+
ignore_keys=[],
|
| 55 |
+
load_only_unet=False,
|
| 56 |
+
monitor="val/loss",
|
| 57 |
+
use_ema=True,
|
| 58 |
+
first_stage_key="image",
|
| 59 |
+
image_size=256,
|
| 60 |
+
channels=3,
|
| 61 |
+
log_every_t=100,
|
| 62 |
+
clip_denoised=True,
|
| 63 |
+
linear_start=1e-4,
|
| 64 |
+
linear_end=2e-2,
|
| 65 |
+
cosine_s=8e-3,
|
| 66 |
+
given_betas=None,
|
| 67 |
+
original_elbo_weight=0.,
|
| 68 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
| 69 |
+
l_simple_weight=1.,
|
| 70 |
+
conditioning_key=None,
|
| 71 |
+
parameterization="eps", # all assuming fixed variance schedules
|
| 72 |
+
scheduler_config=None,
|
| 73 |
+
use_positional_encodings=False,
|
| 74 |
+
learn_logvar=False,
|
| 75 |
+
logvar_init=0.,
|
| 76 |
+
make_it_fit=False,
|
| 77 |
+
ucg_training=None,
|
| 78 |
+
reset_ema=False,
|
| 79 |
+
reset_num_ema_updates=False,
|
| 80 |
+
):
|
| 81 |
+
super().__init__()
|
| 82 |
+
assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
|
| 83 |
+
self.parameterization = parameterization
|
| 84 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
| 85 |
+
self.cond_stage_model = None
|
| 86 |
+
self.clip_denoised = clip_denoised
|
| 87 |
+
self.log_every_t = log_every_t
|
| 88 |
+
self.first_stage_key = first_stage_key
|
| 89 |
+
self.image_size = image_size # try conv?
|
| 90 |
+
self.channels = channels
|
| 91 |
+
self.use_positional_encodings = use_positional_encodings
|
| 92 |
+
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
| 93 |
+
count_params(self.model, verbose=True)
|
| 94 |
+
self.use_ema = use_ema
|
| 95 |
+
if self.use_ema:
|
| 96 |
+
self.model_ema = LitEma(self.model)
|
| 97 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
| 98 |
+
|
| 99 |
+
self.use_scheduler = scheduler_config is not None
|
| 100 |
+
if self.use_scheduler:
|
| 101 |
+
self.scheduler_config = scheduler_config
|
| 102 |
+
|
| 103 |
+
self.v_posterior = v_posterior
|
| 104 |
+
self.original_elbo_weight = original_elbo_weight
|
| 105 |
+
self.l_simple_weight = l_simple_weight
|
| 106 |
+
|
| 107 |
+
if monitor is not None:
|
| 108 |
+
self.monitor = monitor
|
| 109 |
+
self.make_it_fit = make_it_fit
|
| 110 |
+
if reset_ema: assert exists(ckpt_path)
|
| 111 |
+
if ckpt_path is not None:
|
| 112 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
| 113 |
+
if reset_ema:
|
| 114 |
+
assert self.use_ema
|
| 115 |
+
print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
|
| 116 |
+
self.model_ema = LitEma(self.model)
|
| 117 |
+
if reset_num_ema_updates:
|
| 118 |
+
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
|
| 119 |
+
assert self.use_ema
|
| 120 |
+
self.model_ema.reset_num_updates()
|
| 121 |
+
|
| 122 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
| 123 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
| 124 |
+
|
| 125 |
+
self.loss_type = loss_type
|
| 126 |
+
|
| 127 |
+
self.learn_logvar = learn_logvar
|
| 128 |
+
logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
| 129 |
+
if self.learn_logvar:
|
| 130 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
| 131 |
+
else:
|
| 132 |
+
self.register_buffer('logvar', logvar)
|
| 133 |
+
|
| 134 |
+
self.ucg_training = ucg_training or dict()
|
| 135 |
+
if self.ucg_training:
|
| 136 |
+
self.ucg_prng = np.random.RandomState()
|
| 137 |
+
|
| 138 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
| 139 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 140 |
+
if exists(given_betas):
|
| 141 |
+
betas = given_betas
|
| 142 |
+
else:
|
| 143 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
| 144 |
+
cosine_s=cosine_s)
|
| 145 |
+
alphas = 1. - betas
|
| 146 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
| 147 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
| 148 |
+
|
| 149 |
+
timesteps, = betas.shape
|
| 150 |
+
self.num_timesteps = int(timesteps)
|
| 151 |
+
self.linear_start = linear_start
|
| 152 |
+
self.linear_end = linear_end
|
| 153 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
| 154 |
+
|
| 155 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
| 156 |
+
|
| 157 |
+
self.register_buffer('betas', to_torch(betas))
|
| 158 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 159 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
| 160 |
+
|
| 161 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 162 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
| 163 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
| 164 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
| 165 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
| 166 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
| 167 |
+
|
| 168 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
| 169 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
| 170 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
| 171 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
| 172 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
| 173 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
| 174 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
| 175 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
| 176 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
| 177 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
| 178 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
| 179 |
+
|
| 180 |
+
if self.parameterization == "eps":
|
| 181 |
+
lvlb_weights = self.betas ** 2 / (
|
| 182 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
| 183 |
+
elif self.parameterization == "x0":
|
| 184 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
| 185 |
+
elif self.parameterization == "v":
|
| 186 |
+
lvlb_weights = torch.ones_like(self.betas ** 2 / (
|
| 187 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
|
| 188 |
+
else:
|
| 189 |
+
raise NotImplementedError("mu not supported")
|
| 190 |
+
lvlb_weights[0] = lvlb_weights[1]
|
| 191 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
| 192 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
| 193 |
+
|
| 194 |
+
@contextmanager
|
| 195 |
+
def ema_scope(self, context=None):
|
| 196 |
+
if self.use_ema:
|
| 197 |
+
self.model_ema.store(self.model.parameters())
|
| 198 |
+
self.model_ema.copy_to(self.model)
|
| 199 |
+
if context is not None:
|
| 200 |
+
print(f"{context}: Switched to EMA weights")
|
| 201 |
+
try:
|
| 202 |
+
yield None
|
| 203 |
+
finally:
|
| 204 |
+
if self.use_ema:
|
| 205 |
+
self.model_ema.restore(self.model.parameters())
|
| 206 |
+
if context is not None:
|
| 207 |
+
print(f"{context}: Restored training weights")
|
| 208 |
+
|
| 209 |
+
@torch.no_grad()
|
| 210 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
| 211 |
+
sd = torch.load(path, map_location="cpu")
|
| 212 |
+
if "state_dict" in list(sd.keys()):
|
| 213 |
+
sd = sd["state_dict"]
|
| 214 |
+
keys = list(sd.keys())
|
| 215 |
+
for k in keys:
|
| 216 |
+
for ik in ignore_keys:
|
| 217 |
+
if k.startswith(ik):
|
| 218 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 219 |
+
del sd[k]
|
| 220 |
+
if self.make_it_fit:
|
| 221 |
+
n_params = len([name for name, _ in
|
| 222 |
+
itertools.chain(self.named_parameters(),
|
| 223 |
+
self.named_buffers())])
|
| 224 |
+
for name, param in tqdm(
|
| 225 |
+
itertools.chain(self.named_parameters(),
|
| 226 |
+
self.named_buffers()),
|
| 227 |
+
desc="Fitting old weights to new weights",
|
| 228 |
+
total=n_params
|
| 229 |
+
):
|
| 230 |
+
if not name in sd:
|
| 231 |
+
continue
|
| 232 |
+
old_shape = sd[name].shape
|
| 233 |
+
new_shape = param.shape
|
| 234 |
+
assert len(old_shape) == len(new_shape)
|
| 235 |
+
if len(new_shape) > 2:
|
| 236 |
+
# we only modify first two axes
|
| 237 |
+
assert new_shape[2:] == old_shape[2:]
|
| 238 |
+
# assumes first axis corresponds to output dim
|
| 239 |
+
if not new_shape == old_shape:
|
| 240 |
+
new_param = param.clone()
|
| 241 |
+
old_param = sd[name]
|
| 242 |
+
if len(new_shape) == 1:
|
| 243 |
+
for i in range(new_param.shape[0]):
|
| 244 |
+
new_param[i] = old_param[i % old_shape[0]]
|
| 245 |
+
elif len(new_shape) >= 2:
|
| 246 |
+
for i in range(new_param.shape[0]):
|
| 247 |
+
for j in range(new_param.shape[1]):
|
| 248 |
+
new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
|
| 249 |
+
|
| 250 |
+
n_used_old = torch.ones(old_shape[1])
|
| 251 |
+
for j in range(new_param.shape[1]):
|
| 252 |
+
n_used_old[j % old_shape[1]] += 1
|
| 253 |
+
n_used_new = torch.zeros(new_shape[1])
|
| 254 |
+
for j in range(new_param.shape[1]):
|
| 255 |
+
n_used_new[j] = n_used_old[j % old_shape[1]]
|
| 256 |
+
|
| 257 |
+
n_used_new = n_used_new[None, :]
|
| 258 |
+
while len(n_used_new.shape) < len(new_shape):
|
| 259 |
+
n_used_new = n_used_new.unsqueeze(-1)
|
| 260 |
+
new_param /= n_used_new
|
| 261 |
+
|
| 262 |
+
sd[name] = new_param
|
| 263 |
+
|
| 264 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
| 265 |
+
sd, strict=False)
|
| 266 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 267 |
+
if len(missing) > 0:
|
| 268 |
+
print(f"Missing Keys:\n {missing}")
|
| 269 |
+
if len(unexpected) > 0:
|
| 270 |
+
print(f"\nUnexpected Keys:\n {unexpected}")
|
| 271 |
+
|
| 272 |
+
def q_mean_variance(self, x_start, t):
|
| 273 |
+
"""
|
| 274 |
+
Get the distribution q(x_t | x_0).
|
| 275 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
| 276 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
| 277 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
| 278 |
+
"""
|
| 279 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
| 280 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
| 281 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
| 282 |
+
return mean, variance, log_variance
|
| 283 |
+
|
| 284 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
| 285 |
+
return (
|
| 286 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
| 287 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
def predict_start_from_z_and_v(self, x_t, t, v):
|
| 291 |
+
# self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
| 292 |
+
# self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
| 293 |
+
return (
|
| 294 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
|
| 295 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
def predict_eps_from_z_and_v(self, x_t, t, v):
|
| 299 |
+
return (
|
| 300 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
|
| 301 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
def q_posterior(self, x_start, x_t, t):
|
| 305 |
+
posterior_mean = (
|
| 306 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
| 307 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
| 308 |
+
)
|
| 309 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
| 310 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
| 311 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
| 312 |
+
|
| 313 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
| 314 |
+
model_out = self.model(x, t)
|
| 315 |
+
if self.parameterization == "eps":
|
| 316 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 317 |
+
elif self.parameterization == "x0":
|
| 318 |
+
x_recon = model_out
|
| 319 |
+
if clip_denoised:
|
| 320 |
+
x_recon.clamp_(-1., 1.)
|
| 321 |
+
|
| 322 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
| 323 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 324 |
+
|
| 325 |
+
@torch.no_grad()
|
| 326 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
| 327 |
+
b, *_, device = *x.shape, x.device
|
| 328 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
| 329 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
| 330 |
+
# no noise when t == 0
|
| 331 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 332 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 333 |
+
|
| 334 |
+
@torch.no_grad()
|
| 335 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
| 336 |
+
device = self.betas.device
|
| 337 |
+
b = shape[0]
|
| 338 |
+
img = torch.randn(shape, device=device)
|
| 339 |
+
intermediates = [img]
|
| 340 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
| 341 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
| 342 |
+
clip_denoised=self.clip_denoised)
|
| 343 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
| 344 |
+
intermediates.append(img)
|
| 345 |
+
if return_intermediates:
|
| 346 |
+
return img, intermediates
|
| 347 |
+
return img
|
| 348 |
+
|
| 349 |
+
@torch.no_grad()
|
| 350 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
| 351 |
+
image_size = self.image_size
|
| 352 |
+
channels = self.channels
|
| 353 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
| 354 |
+
return_intermediates=return_intermediates)
|
| 355 |
+
|
| 356 |
+
def q_sample(self, x_start, t, noise=None):
|
| 357 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 358 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
| 359 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
| 360 |
+
|
| 361 |
+
def get_v(self, x, noise, t):
|
| 362 |
+
return (
|
| 363 |
+
extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
|
| 364 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
def get_loss(self, pred, target, mean=True):
|
| 368 |
+
if self.loss_type == 'l1':
|
| 369 |
+
loss = (target - pred).abs()
|
| 370 |
+
if mean:
|
| 371 |
+
loss = loss.mean()
|
| 372 |
+
elif self.loss_type == 'l2':
|
| 373 |
+
if mean:
|
| 374 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
| 375 |
+
else:
|
| 376 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
| 377 |
+
else:
|
| 378 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
| 379 |
+
|
| 380 |
+
return loss
|
| 381 |
+
|
| 382 |
+
def p_losses(self, x_start, t, noise=None):
|
| 383 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 384 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 385 |
+
model_out = self.model(x_noisy, t)
|
| 386 |
+
|
| 387 |
+
loss_dict = {}
|
| 388 |
+
if self.parameterization == "eps":
|
| 389 |
+
target = noise
|
| 390 |
+
elif self.parameterization == "x0":
|
| 391 |
+
target = x_start
|
| 392 |
+
elif self.parameterization == "v":
|
| 393 |
+
target = self.get_v(x_start, noise, t)
|
| 394 |
+
else:
|
| 395 |
+
raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
|
| 396 |
+
|
| 397 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
| 398 |
+
|
| 399 |
+
log_prefix = 'train' if self.training else 'val'
|
| 400 |
+
|
| 401 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
| 402 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
| 403 |
+
|
| 404 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
| 405 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
| 406 |
+
|
| 407 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
| 408 |
+
|
| 409 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
| 410 |
+
|
| 411 |
+
return loss, loss_dict
|
| 412 |
+
|
| 413 |
+
def forward(self, x, *args, **kwargs):
|
| 414 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
| 415 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
| 416 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
| 417 |
+
return self.p_losses(x, t, *args, **kwargs)
|
| 418 |
+
|
| 419 |
+
def get_input(self, batch, k):
|
| 420 |
+
x = batch[k]
|
| 421 |
+
if len(x.shape) == 3:
|
| 422 |
+
x = x[..., None]
|
| 423 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
| 424 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
| 425 |
+
return x
|
| 426 |
+
|
| 427 |
+
def shared_step(self, batch):
|
| 428 |
+
x = self.get_input(batch, self.first_stage_key)
|
| 429 |
+
loss, loss_dict = self(x)
|
| 430 |
+
return loss, loss_dict
|
| 431 |
+
|
| 432 |
+
def training_step(self, batch, batch_idx):
|
| 433 |
+
for k in self.ucg_training:
|
| 434 |
+
p = self.ucg_training[k]["p"]
|
| 435 |
+
val = self.ucg_training[k]["val"]
|
| 436 |
+
if val is None:
|
| 437 |
+
val = ""
|
| 438 |
+
for i in range(len(batch[k])):
|
| 439 |
+
if self.ucg_prng.choice(2, p=[1 - p, p]):
|
| 440 |
+
batch[k][i] = val
|
| 441 |
+
|
| 442 |
+
loss, loss_dict = self.shared_step(batch)
|
| 443 |
+
|
| 444 |
+
self.log_dict(loss_dict, prog_bar=True,
|
| 445 |
+
logger=True, on_step=True, on_epoch=True)
|
| 446 |
+
|
| 447 |
+
self.log("global_step", self.global_step,
|
| 448 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 449 |
+
|
| 450 |
+
if self.use_scheduler:
|
| 451 |
+
lr = self.optimizers().param_groups[0]['lr']
|
| 452 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
| 453 |
+
|
| 454 |
+
return loss
|
| 455 |
+
|
| 456 |
+
@torch.no_grad()
|
| 457 |
+
def validation_step(self, batch, batch_idx):
|
| 458 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
| 459 |
+
with self.ema_scope():
|
| 460 |
+
_, loss_dict_ema = self.shared_step(batch)
|
| 461 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
| 462 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
| 463 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
| 464 |
+
|
| 465 |
+
def on_train_batch_end(self, *args, **kwargs):
|
| 466 |
+
if self.use_ema:
|
| 467 |
+
self.model_ema(self.model)
|
| 468 |
+
|
| 469 |
+
def _get_rows_from_list(self, samples):
|
| 470 |
+
n_imgs_per_row = len(samples)
|
| 471 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
| 472 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
| 473 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
| 474 |
+
return denoise_grid
|
| 475 |
+
|
| 476 |
+
@torch.no_grad()
|
| 477 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
| 478 |
+
log = dict()
|
| 479 |
+
x = self.get_input(batch, self.first_stage_key)
|
| 480 |
+
N = min(x.shape[0], N)
|
| 481 |
+
n_row = min(x.shape[0], n_row)
|
| 482 |
+
x = x.to(self.device)[:N]
|
| 483 |
+
log["inputs"] = x
|
| 484 |
+
|
| 485 |
+
# get diffusion row
|
| 486 |
+
diffusion_row = list()
|
| 487 |
+
x_start = x[:n_row]
|
| 488 |
+
|
| 489 |
+
for t in range(self.num_timesteps):
|
| 490 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 491 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 492 |
+
t = t.to(self.device).long()
|
| 493 |
+
noise = torch.randn_like(x_start)
|
| 494 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 495 |
+
diffusion_row.append(x_noisy)
|
| 496 |
+
|
| 497 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
| 498 |
+
|
| 499 |
+
if sample:
|
| 500 |
+
# get denoise row
|
| 501 |
+
with self.ema_scope("Plotting"):
|
| 502 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
| 503 |
+
|
| 504 |
+
log["samples"] = samples
|
| 505 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
| 506 |
+
|
| 507 |
+
if return_keys:
|
| 508 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
| 509 |
+
return log
|
| 510 |
+
else:
|
| 511 |
+
return {key: log[key] for key in return_keys}
|
| 512 |
+
return log
|
| 513 |
+
|
| 514 |
+
def configure_optimizers(self):
|
| 515 |
+
lr = self.learning_rate
|
| 516 |
+
params = list(self.model.parameters())
|
| 517 |
+
if self.learn_logvar:
|
| 518 |
+
params = params + [self.logvar]
|
| 519 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 520 |
+
return opt
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
class LatentDiffusion(DDPM):
|
| 524 |
+
"""main class"""
|
| 525 |
+
|
| 526 |
+
def __init__(self,
|
| 527 |
+
first_stage_config,
|
| 528 |
+
cond_stage_config,
|
| 529 |
+
num_timesteps_cond=None,
|
| 530 |
+
cond_stage_key="image",
|
| 531 |
+
cond_stage_trainable=False,
|
| 532 |
+
concat_mode=True,
|
| 533 |
+
cond_stage_forward=None,
|
| 534 |
+
conditioning_key=None,
|
| 535 |
+
scale_factor=1.0,
|
| 536 |
+
scale_by_std=False,
|
| 537 |
+
force_null_conditioning=False,
|
| 538 |
+
*args, **kwargs):
|
| 539 |
+
self.force_null_conditioning = force_null_conditioning
|
| 540 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
| 541 |
+
self.scale_by_std = scale_by_std
|
| 542 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
| 543 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
| 544 |
+
if conditioning_key is None:
|
| 545 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
| 546 |
+
if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
|
| 547 |
+
conditioning_key = None
|
| 548 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
| 549 |
+
reset_ema = kwargs.pop("reset_ema", False)
|
| 550 |
+
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
|
| 551 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
| 552 |
+
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
| 553 |
+
self.concat_mode = concat_mode
|
| 554 |
+
self.cond_stage_trainable = cond_stage_trainable
|
| 555 |
+
self.cond_stage_key = cond_stage_key
|
| 556 |
+
try:
|
| 557 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
| 558 |
+
except:
|
| 559 |
+
self.num_downs = 0
|
| 560 |
+
if not scale_by_std:
|
| 561 |
+
self.scale_factor = scale_factor
|
| 562 |
+
else:
|
| 563 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
| 564 |
+
self.instantiate_first_stage(first_stage_config)
|
| 565 |
+
self.instantiate_cond_stage(cond_stage_config)
|
| 566 |
+
self.cond_stage_forward = cond_stage_forward
|
| 567 |
+
self.clip_denoised = False
|
| 568 |
+
self.bbox_tokenizer = None
|
| 569 |
+
|
| 570 |
+
self.restarted_from_ckpt = False
|
| 571 |
+
if ckpt_path is not None:
|
| 572 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
| 573 |
+
self.restarted_from_ckpt = True
|
| 574 |
+
if reset_ema:
|
| 575 |
+
assert self.use_ema
|
| 576 |
+
print(
|
| 577 |
+
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
|
| 578 |
+
self.model_ema = LitEma(self.model)
|
| 579 |
+
if reset_num_ema_updates:
|
| 580 |
+
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
|
| 581 |
+
assert self.use_ema
|
| 582 |
+
self.model_ema.reset_num_updates()
|
| 583 |
+
|
| 584 |
+
def make_cond_schedule(self, ):
|
| 585 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
| 586 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
| 587 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
| 588 |
+
|
| 589 |
+
@rank_zero_only
|
| 590 |
+
@torch.no_grad()
|
| 591 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
| 592 |
+
# only for very first batch
|
| 593 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
| 594 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
| 595 |
+
# set rescale weight to 1./std of encodings
|
| 596 |
+
print("### USING STD-RESCALING ###")
|
| 597 |
+
x = super().get_input(batch, self.first_stage_key)
|
| 598 |
+
x = x.to(self.device)
|
| 599 |
+
encoder_posterior = self.encode_first_stage(x)
|
| 600 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 601 |
+
del self.scale_factor
|
| 602 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
| 603 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
| 604 |
+
print("### USING STD-RESCALING ###")
|
| 605 |
+
|
| 606 |
+
def register_schedule(self,
|
| 607 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
| 608 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
| 609 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
| 610 |
+
|
| 611 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
| 612 |
+
if self.shorten_cond_schedule:
|
| 613 |
+
self.make_cond_schedule()
|
| 614 |
+
|
| 615 |
+
def instantiate_first_stage(self, config):
|
| 616 |
+
model = instantiate_from_config(config)
|
| 617 |
+
self.first_stage_model = model.eval()
|
| 618 |
+
self.first_stage_model.train = disabled_train
|
| 619 |
+
for param in self.first_stage_model.parameters():
|
| 620 |
+
param.requires_grad = False
|
| 621 |
+
|
| 622 |
+
def instantiate_cond_stage(self, config):
|
| 623 |
+
if not self.cond_stage_trainable:
|
| 624 |
+
if config == "__is_first_stage__":
|
| 625 |
+
print("Using first stage also as cond stage.")
|
| 626 |
+
self.cond_stage_model = self.first_stage_model
|
| 627 |
+
elif config == "__is_unconditional__":
|
| 628 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
| 629 |
+
self.cond_stage_model = None
|
| 630 |
+
# self.be_unconditional = True
|
| 631 |
+
else:
|
| 632 |
+
model = instantiate_from_config(config)
|
| 633 |
+
self.cond_stage_model = model.eval()
|
| 634 |
+
self.cond_stage_model.train = disabled_train
|
| 635 |
+
for param in self.cond_stage_model.parameters():
|
| 636 |
+
param.requires_grad = False
|
| 637 |
+
else:
|
| 638 |
+
assert config != '__is_first_stage__'
|
| 639 |
+
assert config != '__is_unconditional__'
|
| 640 |
+
model = instantiate_from_config(config)
|
| 641 |
+
self.cond_stage_model = model
|
| 642 |
+
|
| 643 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
| 644 |
+
denoise_row = []
|
| 645 |
+
for zd in tqdm(samples, desc=desc):
|
| 646 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
| 647 |
+
force_not_quantize=force_no_decoder_quantization))
|
| 648 |
+
n_imgs_per_row = len(denoise_row)
|
| 649 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
| 650 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
| 651 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
| 652 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
| 653 |
+
return denoise_grid
|
| 654 |
+
|
| 655 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
| 656 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
| 657 |
+
z = encoder_posterior.sample()
|
| 658 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
| 659 |
+
z = encoder_posterior
|
| 660 |
+
else:
|
| 661 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
| 662 |
+
return self.scale_factor * z
|
| 663 |
+
|
| 664 |
+
def get_learned_conditioning(self, c):
|
| 665 |
+
if self.cond_stage_forward is None:
|
| 666 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
| 667 |
+
c = self.cond_stage_model.encode(c)
|
| 668 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
| 669 |
+
c = c.mode()
|
| 670 |
+
else:
|
| 671 |
+
c = self.cond_stage_model(c)
|
| 672 |
+
else:
|
| 673 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
| 674 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
| 675 |
+
return c
|
| 676 |
+
|
| 677 |
+
def meshgrid(self, h, w):
|
| 678 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
| 679 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
| 680 |
+
|
| 681 |
+
arr = torch.cat([y, x], dim=-1)
|
| 682 |
+
return arr
|
| 683 |
+
|
| 684 |
+
def delta_border(self, h, w):
|
| 685 |
+
"""
|
| 686 |
+
:param h: height
|
| 687 |
+
:param w: width
|
| 688 |
+
:return: normalized distance to image border,
|
| 689 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
| 690 |
+
"""
|
| 691 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
| 692 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
| 693 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
| 694 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
| 695 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
| 696 |
+
return edge_dist
|
| 697 |
+
|
| 698 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
| 699 |
+
weighting = self.delta_border(h, w)
|
| 700 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
| 701 |
+
self.split_input_params["clip_max_weight"], )
|
| 702 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
| 703 |
+
|
| 704 |
+
if self.split_input_params["tie_braker"]:
|
| 705 |
+
L_weighting = self.delta_border(Ly, Lx)
|
| 706 |
+
L_weighting = torch.clip(L_weighting,
|
| 707 |
+
self.split_input_params["clip_min_tie_weight"],
|
| 708 |
+
self.split_input_params["clip_max_tie_weight"])
|
| 709 |
+
|
| 710 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
| 711 |
+
weighting = weighting * L_weighting
|
| 712 |
+
return weighting
|
| 713 |
+
|
| 714 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
| 715 |
+
"""
|
| 716 |
+
:param x: img of size (bs, c, h, w)
|
| 717 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
| 718 |
+
"""
|
| 719 |
+
bs, nc, h, w = x.shape
|
| 720 |
+
|
| 721 |
+
# number of crops in image
|
| 722 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
| 723 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
| 724 |
+
|
| 725 |
+
if uf == 1 and df == 1:
|
| 726 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 727 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 728 |
+
|
| 729 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
| 730 |
+
|
| 731 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
| 732 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
| 733 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
| 734 |
+
|
| 735 |
+
elif uf > 1 and df == 1:
|
| 736 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 737 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 738 |
+
|
| 739 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
| 740 |
+
dilation=1, padding=0,
|
| 741 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
| 742 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
| 743 |
+
|
| 744 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
| 745 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
| 746 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
| 747 |
+
|
| 748 |
+
elif df > 1 and uf == 1:
|
| 749 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
| 750 |
+
unfold = torch.nn.Unfold(**fold_params)
|
| 751 |
+
|
| 752 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
| 753 |
+
dilation=1, padding=0,
|
| 754 |
+
stride=(stride[0] // df, stride[1] // df))
|
| 755 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
| 756 |
+
|
| 757 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
| 758 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
| 759 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
| 760 |
+
|
| 761 |
+
else:
|
| 762 |
+
raise NotImplementedError
|
| 763 |
+
|
| 764 |
+
return fold, unfold, normalization, weighting
|
| 765 |
+
|
| 766 |
+
@torch.no_grad()
|
| 767 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
| 768 |
+
cond_key=None, return_original_cond=False, bs=None, return_x=False):
|
| 769 |
+
x = super().get_input(batch, k)
|
| 770 |
+
if bs is not None:
|
| 771 |
+
x = x[:bs]
|
| 772 |
+
x = x.to(self.device)
|
| 773 |
+
encoder_posterior = self.encode_first_stage(x)
|
| 774 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
| 775 |
+
|
| 776 |
+
if self.model.conditioning_key is not None and not self.force_null_conditioning:
|
| 777 |
+
if cond_key is None:
|
| 778 |
+
cond_key = self.cond_stage_key
|
| 779 |
+
if cond_key != self.first_stage_key:
|
| 780 |
+
if cond_key in ['caption', 'coordinates_bbox', "txt"]:
|
| 781 |
+
xc = batch[cond_key]
|
| 782 |
+
elif cond_key in ['class_label', 'cls']:
|
| 783 |
+
xc = batch
|
| 784 |
+
else:
|
| 785 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
| 786 |
+
else:
|
| 787 |
+
xc = x
|
| 788 |
+
if not self.cond_stage_trainable or force_c_encode:
|
| 789 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
| 790 |
+
c = self.get_learned_conditioning(xc)
|
| 791 |
+
else:
|
| 792 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
| 793 |
+
else:
|
| 794 |
+
c = xc
|
| 795 |
+
if bs is not None:
|
| 796 |
+
c = c[:bs]
|
| 797 |
+
|
| 798 |
+
if self.use_positional_encodings:
|
| 799 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
| 800 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
| 801 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
| 802 |
+
|
| 803 |
+
else:
|
| 804 |
+
c = None
|
| 805 |
+
xc = None
|
| 806 |
+
if self.use_positional_encodings:
|
| 807 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
| 808 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
| 809 |
+
out = [z, c]
|
| 810 |
+
if return_first_stage_outputs:
|
| 811 |
+
xrec = self.decode_first_stage(z)
|
| 812 |
+
out.extend([x, xrec])
|
| 813 |
+
if return_x:
|
| 814 |
+
out.extend([x])
|
| 815 |
+
if return_original_cond:
|
| 816 |
+
out.append(xc)
|
| 817 |
+
return out
|
| 818 |
+
|
| 819 |
+
@torch.no_grad()
|
| 820 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
| 821 |
+
if predict_cids:
|
| 822 |
+
if z.dim() == 4:
|
| 823 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
| 824 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
| 825 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
| 826 |
+
|
| 827 |
+
z = 1. / self.scale_factor * z
|
| 828 |
+
return self.first_stage_model.decode(z)
|
| 829 |
+
|
| 830 |
+
@torch.no_grad()
|
| 831 |
+
def encode_first_stage(self, x):
|
| 832 |
+
return self.first_stage_model.encode(x)
|
| 833 |
+
|
| 834 |
+
def shared_step(self, batch, **kwargs):
|
| 835 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
| 836 |
+
loss = self(x, c)
|
| 837 |
+
return loss
|
| 838 |
+
|
| 839 |
+
def forward(self, x, c, *args, **kwargs):
|
| 840 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
| 841 |
+
if self.model.conditioning_key is not None:
|
| 842 |
+
assert c is not None
|
| 843 |
+
if self.cond_stage_trainable:
|
| 844 |
+
c = self.get_learned_conditioning(c)
|
| 845 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
| 846 |
+
tc = self.cond_ids[t].to(self.device)
|
| 847 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
| 848 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
| 849 |
+
|
| 850 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
| 851 |
+
if isinstance(cond, dict):
|
| 852 |
+
# hybrid case, cond is expected to be a dict
|
| 853 |
+
pass
|
| 854 |
+
else:
|
| 855 |
+
if not isinstance(cond, list):
|
| 856 |
+
cond = [cond]
|
| 857 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
| 858 |
+
cond = {key: cond}
|
| 859 |
+
|
| 860 |
+
x_recon = self.model(x_noisy, t, **cond)
|
| 861 |
+
|
| 862 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
| 863 |
+
return x_recon[0]
|
| 864 |
+
else:
|
| 865 |
+
return x_recon
|
| 866 |
+
|
| 867 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
| 868 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
| 869 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
| 870 |
+
|
| 871 |
+
def _prior_bpd(self, x_start):
|
| 872 |
+
"""
|
| 873 |
+
Get the prior KL term for the variational lower-bound, measured in
|
| 874 |
+
bits-per-dim.
|
| 875 |
+
This term can't be optimized, as it only depends on the encoder.
|
| 876 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
| 877 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
| 878 |
+
"""
|
| 879 |
+
batch_size = x_start.shape[0]
|
| 880 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
| 881 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
| 882 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
| 883 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
| 884 |
+
|
| 885 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
| 886 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
| 887 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
| 888 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
| 889 |
+
|
| 890 |
+
loss_dict = {}
|
| 891 |
+
prefix = 'train' if self.training else 'val'
|
| 892 |
+
|
| 893 |
+
if self.parameterization == "x0":
|
| 894 |
+
target = x_start
|
| 895 |
+
elif self.parameterization == "eps":
|
| 896 |
+
target = noise
|
| 897 |
+
elif self.parameterization == "v":
|
| 898 |
+
target = self.get_v(x_start, noise, t)
|
| 899 |
+
else:
|
| 900 |
+
raise NotImplementedError()
|
| 901 |
+
|
| 902 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
| 903 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
| 904 |
+
|
| 905 |
+
logvar_t = self.logvar[t].to(self.device)
|
| 906 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
| 907 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
| 908 |
+
if self.learn_logvar:
|
| 909 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
| 910 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
| 911 |
+
|
| 912 |
+
loss = self.l_simple_weight * loss.mean()
|
| 913 |
+
|
| 914 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
| 915 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
| 916 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
| 917 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
| 918 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
| 919 |
+
|
| 920 |
+
return loss, loss_dict
|
| 921 |
+
|
| 922 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
| 923 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
| 924 |
+
t_in = t
|
| 925 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
| 926 |
+
|
| 927 |
+
if score_corrector is not None:
|
| 928 |
+
assert self.parameterization == "eps"
|
| 929 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
| 930 |
+
|
| 931 |
+
if return_codebook_ids:
|
| 932 |
+
model_out, logits = model_out
|
| 933 |
+
|
| 934 |
+
if self.parameterization == "eps":
|
| 935 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
| 936 |
+
elif self.parameterization == "x0":
|
| 937 |
+
x_recon = model_out
|
| 938 |
+
else:
|
| 939 |
+
raise NotImplementedError()
|
| 940 |
+
|
| 941 |
+
if clip_denoised:
|
| 942 |
+
x_recon.clamp_(-1., 1.)
|
| 943 |
+
if quantize_denoised:
|
| 944 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
| 945 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
| 946 |
+
if return_codebook_ids:
|
| 947 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
| 948 |
+
elif return_x0:
|
| 949 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
| 950 |
+
else:
|
| 951 |
+
return model_mean, posterior_variance, posterior_log_variance
|
| 952 |
+
|
| 953 |
+
@torch.no_grad()
|
| 954 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
| 955 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
| 956 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
| 957 |
+
b, *_, device = *x.shape, x.device
|
| 958 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
| 959 |
+
return_codebook_ids=return_codebook_ids,
|
| 960 |
+
quantize_denoised=quantize_denoised,
|
| 961 |
+
return_x0=return_x0,
|
| 962 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
| 963 |
+
if return_codebook_ids:
|
| 964 |
+
raise DeprecationWarning("Support dropped.")
|
| 965 |
+
model_mean, _, model_log_variance, logits = outputs
|
| 966 |
+
elif return_x0:
|
| 967 |
+
model_mean, _, model_log_variance, x0 = outputs
|
| 968 |
+
else:
|
| 969 |
+
model_mean, _, model_log_variance = outputs
|
| 970 |
+
|
| 971 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
| 972 |
+
if noise_dropout > 0.:
|
| 973 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 974 |
+
# no noise when t == 0
|
| 975 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
| 976 |
+
|
| 977 |
+
if return_codebook_ids:
|
| 978 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
| 979 |
+
if return_x0:
|
| 980 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
| 981 |
+
else:
|
| 982 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
| 983 |
+
|
| 984 |
+
@torch.no_grad()
|
| 985 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
| 986 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
| 987 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
| 988 |
+
log_every_t=None):
|
| 989 |
+
if not log_every_t:
|
| 990 |
+
log_every_t = self.log_every_t
|
| 991 |
+
timesteps = self.num_timesteps
|
| 992 |
+
if batch_size is not None:
|
| 993 |
+
b = batch_size if batch_size is not None else shape[0]
|
| 994 |
+
shape = [batch_size] + list(shape)
|
| 995 |
+
else:
|
| 996 |
+
b = batch_size = shape[0]
|
| 997 |
+
if x_T is None:
|
| 998 |
+
img = torch.randn(shape, device=self.device)
|
| 999 |
+
else:
|
| 1000 |
+
img = x_T
|
| 1001 |
+
intermediates = []
|
| 1002 |
+
if cond is not None:
|
| 1003 |
+
if isinstance(cond, dict):
|
| 1004 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
| 1005 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
| 1006 |
+
else:
|
| 1007 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
| 1008 |
+
|
| 1009 |
+
if start_T is not None:
|
| 1010 |
+
timesteps = min(timesteps, start_T)
|
| 1011 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
| 1012 |
+
total=timesteps) if verbose else reversed(
|
| 1013 |
+
range(0, timesteps))
|
| 1014 |
+
if type(temperature) == float:
|
| 1015 |
+
temperature = [temperature] * timesteps
|
| 1016 |
+
|
| 1017 |
+
for i in iterator:
|
| 1018 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
| 1019 |
+
if self.shorten_cond_schedule:
|
| 1020 |
+
assert self.model.conditioning_key != 'hybrid'
|
| 1021 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 1022 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 1023 |
+
|
| 1024 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
| 1025 |
+
clip_denoised=self.clip_denoised,
|
| 1026 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
| 1027 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
| 1028 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
| 1029 |
+
if mask is not None:
|
| 1030 |
+
assert x0 is not None
|
| 1031 |
+
img_orig = self.q_sample(x0, ts)
|
| 1032 |
+
img = img_orig * mask + (1. - mask) * img
|
| 1033 |
+
|
| 1034 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 1035 |
+
intermediates.append(x0_partial)
|
| 1036 |
+
if callback: callback(i)
|
| 1037 |
+
if img_callback: img_callback(img, i)
|
| 1038 |
+
return img, intermediates
|
| 1039 |
+
|
| 1040 |
+
@torch.no_grad()
|
| 1041 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
| 1042 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
| 1043 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
| 1044 |
+
log_every_t=None):
|
| 1045 |
+
|
| 1046 |
+
if not log_every_t:
|
| 1047 |
+
log_every_t = self.log_every_t
|
| 1048 |
+
device = self.betas.device
|
| 1049 |
+
b = shape[0]
|
| 1050 |
+
if x_T is None:
|
| 1051 |
+
img = torch.randn(shape, device=device)
|
| 1052 |
+
else:
|
| 1053 |
+
img = x_T
|
| 1054 |
+
|
| 1055 |
+
intermediates = [img]
|
| 1056 |
+
if timesteps is None:
|
| 1057 |
+
timesteps = self.num_timesteps
|
| 1058 |
+
|
| 1059 |
+
if start_T is not None:
|
| 1060 |
+
timesteps = min(timesteps, start_T)
|
| 1061 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
| 1062 |
+
range(0, timesteps))
|
| 1063 |
+
|
| 1064 |
+
if mask is not None:
|
| 1065 |
+
assert x0 is not None
|
| 1066 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
| 1067 |
+
|
| 1068 |
+
for i in iterator:
|
| 1069 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
| 1070 |
+
if self.shorten_cond_schedule:
|
| 1071 |
+
assert self.model.conditioning_key != 'hybrid'
|
| 1072 |
+
tc = self.cond_ids[ts].to(cond.device)
|
| 1073 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
| 1074 |
+
|
| 1075 |
+
img = self.p_sample(img, cond, ts,
|
| 1076 |
+
clip_denoised=self.clip_denoised,
|
| 1077 |
+
quantize_denoised=quantize_denoised)
|
| 1078 |
+
if mask is not None:
|
| 1079 |
+
img_orig = self.q_sample(x0, ts)
|
| 1080 |
+
img = img_orig * mask + (1. - mask) * img
|
| 1081 |
+
|
| 1082 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
| 1083 |
+
intermediates.append(img)
|
| 1084 |
+
if callback: callback(i)
|
| 1085 |
+
if img_callback: img_callback(img, i)
|
| 1086 |
+
|
| 1087 |
+
if return_intermediates:
|
| 1088 |
+
return img, intermediates
|
| 1089 |
+
return img
|
| 1090 |
+
|
| 1091 |
+
@torch.no_grad()
|
| 1092 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
| 1093 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
| 1094 |
+
mask=None, x0=None, shape=None, **kwargs):
|
| 1095 |
+
if shape is None:
|
| 1096 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
| 1097 |
+
if cond is not None:
|
| 1098 |
+
if isinstance(cond, dict):
|
| 1099 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
| 1100 |
+
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
| 1101 |
+
else:
|
| 1102 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
| 1103 |
+
return self.p_sample_loop(cond,
|
| 1104 |
+
shape,
|
| 1105 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
| 1106 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
| 1107 |
+
mask=mask, x0=x0)
|
| 1108 |
+
|
| 1109 |
+
@torch.no_grad()
|
| 1110 |
+
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
| 1111 |
+
if ddim:
|
| 1112 |
+
ddim_sampler = DDIMSampler(self)
|
| 1113 |
+
shape = (self.channels, self.image_size, self.image_size)
|
| 1114 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
|
| 1115 |
+
shape, cond, verbose=False, **kwargs)
|
| 1116 |
+
|
| 1117 |
+
else:
|
| 1118 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
| 1119 |
+
return_intermediates=True, **kwargs)
|
| 1120 |
+
|
| 1121 |
+
return samples, intermediates
|
| 1122 |
+
|
| 1123 |
+
@torch.no_grad()
|
| 1124 |
+
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
| 1125 |
+
if null_label is not None:
|
| 1126 |
+
xc = null_label
|
| 1127 |
+
if isinstance(xc, ListConfig):
|
| 1128 |
+
xc = list(xc)
|
| 1129 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
| 1130 |
+
c = self.get_learned_conditioning(xc)
|
| 1131 |
+
else:
|
| 1132 |
+
if hasattr(xc, "to"):
|
| 1133 |
+
xc = xc.to(self.device)
|
| 1134 |
+
c = self.get_learned_conditioning(xc)
|
| 1135 |
+
else:
|
| 1136 |
+
if self.cond_stage_key in ["class_label", "cls"]:
|
| 1137 |
+
xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
|
| 1138 |
+
return self.get_learned_conditioning(xc)
|
| 1139 |
+
else:
|
| 1140 |
+
raise NotImplementedError("todo")
|
| 1141 |
+
if isinstance(c, list): # in case the encoder gives us a list
|
| 1142 |
+
for i in range(len(c)):
|
| 1143 |
+
c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
|
| 1144 |
+
else:
|
| 1145 |
+
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
|
| 1146 |
+
return c
|
| 1147 |
+
|
| 1148 |
+
@torch.no_grad()
|
| 1149 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
|
| 1150 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
| 1151 |
+
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
| 1152 |
+
use_ema_scope=True,
|
| 1153 |
+
**kwargs):
|
| 1154 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
| 1155 |
+
use_ddim = ddim_steps is not None
|
| 1156 |
+
|
| 1157 |
+
log = dict()
|
| 1158 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
| 1159 |
+
return_first_stage_outputs=True,
|
| 1160 |
+
force_c_encode=True,
|
| 1161 |
+
return_original_cond=True,
|
| 1162 |
+
bs=N)
|
| 1163 |
+
N = min(x.shape[0], N)
|
| 1164 |
+
n_row = min(x.shape[0], n_row)
|
| 1165 |
+
log["inputs"] = x
|
| 1166 |
+
log["reconstruction"] = xrec
|
| 1167 |
+
if self.model.conditioning_key is not None:
|
| 1168 |
+
if hasattr(self.cond_stage_model, "decode"):
|
| 1169 |
+
xc = self.cond_stage_model.decode(c)
|
| 1170 |
+
log["conditioning"] = xc
|
| 1171 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
| 1172 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
| 1173 |
+
log["conditioning"] = xc
|
| 1174 |
+
elif self.cond_stage_key in ['class_label', "cls"]:
|
| 1175 |
+
try:
|
| 1176 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
| 1177 |
+
log['conditioning'] = xc
|
| 1178 |
+
except KeyError:
|
| 1179 |
+
# probably no "human_label" in batch
|
| 1180 |
+
pass
|
| 1181 |
+
elif isimage(xc):
|
| 1182 |
+
log["conditioning"] = xc
|
| 1183 |
+
if ismap(xc):
|
| 1184 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
| 1185 |
+
|
| 1186 |
+
if plot_diffusion_rows:
|
| 1187 |
+
# get diffusion row
|
| 1188 |
+
diffusion_row = list()
|
| 1189 |
+
z_start = z[:n_row]
|
| 1190 |
+
for t in range(self.num_timesteps):
|
| 1191 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 1192 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 1193 |
+
t = t.to(self.device).long()
|
| 1194 |
+
noise = torch.randn_like(z_start)
|
| 1195 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
| 1196 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
| 1197 |
+
|
| 1198 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
| 1199 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
| 1200 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
| 1201 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
| 1202 |
+
log["diffusion_row"] = diffusion_grid
|
| 1203 |
+
|
| 1204 |
+
if sample:
|
| 1205 |
+
# get denoise row
|
| 1206 |
+
with ema_scope("Sampling"):
|
| 1207 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
| 1208 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
| 1209 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
| 1210 |
+
x_samples = self.decode_first_stage(samples)
|
| 1211 |
+
log["samples"] = x_samples
|
| 1212 |
+
if plot_denoise_rows:
|
| 1213 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
| 1214 |
+
log["denoise_row"] = denoise_grid
|
| 1215 |
+
|
| 1216 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
| 1217 |
+
self.first_stage_model, IdentityFirstStage):
|
| 1218 |
+
# also display when quantizing x0 while sampling
|
| 1219 |
+
with ema_scope("Plotting Quantized Denoised"):
|
| 1220 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
| 1221 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
| 1222 |
+
quantize_denoised=True)
|
| 1223 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
| 1224 |
+
# quantize_denoised=True)
|
| 1225 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1226 |
+
log["samples_x0_quantized"] = x_samples
|
| 1227 |
+
|
| 1228 |
+
if unconditional_guidance_scale > 1.0:
|
| 1229 |
+
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
| 1230 |
+
if self.model.conditioning_key == "crossattn-adm":
|
| 1231 |
+
uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
|
| 1232 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
| 1233 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
| 1234 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
| 1235 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 1236 |
+
unconditional_conditioning=uc,
|
| 1237 |
+
)
|
| 1238 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
| 1239 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
| 1240 |
+
|
| 1241 |
+
if inpaint:
|
| 1242 |
+
# make a simple center square
|
| 1243 |
+
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
| 1244 |
+
mask = torch.ones(N, h, w).to(self.device)
|
| 1245 |
+
# zeros will be filled in
|
| 1246 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
| 1247 |
+
mask = mask[:, None, ...]
|
| 1248 |
+
with ema_scope("Plotting Inpaint"):
|
| 1249 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
|
| 1250 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
| 1251 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1252 |
+
log["samples_inpainting"] = x_samples
|
| 1253 |
+
log["mask"] = mask
|
| 1254 |
+
|
| 1255 |
+
# outpaint
|
| 1256 |
+
mask = 1. - mask
|
| 1257 |
+
with ema_scope("Plotting Outpaint"):
|
| 1258 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
|
| 1259 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
| 1260 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
| 1261 |
+
log["samples_outpainting"] = x_samples
|
| 1262 |
+
|
| 1263 |
+
if plot_progressive_rows:
|
| 1264 |
+
with ema_scope("Plotting Progressives"):
|
| 1265 |
+
img, progressives = self.progressive_denoising(c,
|
| 1266 |
+
shape=(self.channels, self.image_size, self.image_size),
|
| 1267 |
+
batch_size=N)
|
| 1268 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
| 1269 |
+
log["progressive_row"] = prog_row
|
| 1270 |
+
|
| 1271 |
+
if return_keys:
|
| 1272 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
| 1273 |
+
return log
|
| 1274 |
+
else:
|
| 1275 |
+
return {key: log[key] for key in return_keys}
|
| 1276 |
+
return log
|
| 1277 |
+
|
| 1278 |
+
def configure_optimizers(self):
|
| 1279 |
+
lr = self.learning_rate
|
| 1280 |
+
params = list(self.model.parameters())
|
| 1281 |
+
if self.cond_stage_trainable:
|
| 1282 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
| 1283 |
+
params = params + list(self.cond_stage_model.parameters())
|
| 1284 |
+
if self.learn_logvar:
|
| 1285 |
+
print('Diffusion model optimizing logvar')
|
| 1286 |
+
params.append(self.logvar)
|
| 1287 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
| 1288 |
+
if self.use_scheduler:
|
| 1289 |
+
assert 'target' in self.scheduler_config
|
| 1290 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
| 1291 |
+
|
| 1292 |
+
print("Setting up LambdaLR scheduler...")
|
| 1293 |
+
scheduler = [
|
| 1294 |
+
{
|
| 1295 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
| 1296 |
+
'interval': 'step',
|
| 1297 |
+
'frequency': 1
|
| 1298 |
+
}]
|
| 1299 |
+
return [opt], scheduler
|
| 1300 |
+
return opt
|
| 1301 |
+
|
| 1302 |
+
@torch.no_grad()
|
| 1303 |
+
def to_rgb(self, x):
|
| 1304 |
+
x = x.float()
|
| 1305 |
+
if not hasattr(self, "colorize"):
|
| 1306 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
| 1307 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
| 1308 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
| 1309 |
+
return x
|
| 1310 |
+
|
| 1311 |
+
|
| 1312 |
+
class DiffusionWrapper(pl.LightningModule):
|
| 1313 |
+
def __init__(self, diff_model_config, conditioning_key):
|
| 1314 |
+
super().__init__()
|
| 1315 |
+
self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
|
| 1316 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
| 1317 |
+
self.conditioning_key = conditioning_key
|
| 1318 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
|
| 1319 |
+
|
| 1320 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
|
| 1321 |
+
if self.conditioning_key is None:
|
| 1322 |
+
out = self.diffusion_model(x, t)
|
| 1323 |
+
elif self.conditioning_key == 'concat':
|
| 1324 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1325 |
+
out = self.diffusion_model(xc, t)
|
| 1326 |
+
elif self.conditioning_key == 'crossattn':
|
| 1327 |
+
if not self.sequential_cross_attn:
|
| 1328 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1329 |
+
else:
|
| 1330 |
+
cc = c_crossattn
|
| 1331 |
+
out = self.diffusion_model(x, t, context=cc)
|
| 1332 |
+
elif self.conditioning_key == 'hybrid':
|
| 1333 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1334 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1335 |
+
out = self.diffusion_model(xc, t, context=cc)
|
| 1336 |
+
elif self.conditioning_key == 'hybrid-adm':
|
| 1337 |
+
assert c_adm is not None
|
| 1338 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
| 1339 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1340 |
+
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
| 1341 |
+
elif self.conditioning_key == 'crossattn-adm':
|
| 1342 |
+
assert c_adm is not None
|
| 1343 |
+
cc = torch.cat(c_crossattn, 1)
|
| 1344 |
+
out = self.diffusion_model(x, t, context=cc, y=c_adm)
|
| 1345 |
+
elif self.conditioning_key == 'adm':
|
| 1346 |
+
cc = c_crossattn[0]
|
| 1347 |
+
out = self.diffusion_model(x, t, y=cc)
|
| 1348 |
+
else:
|
| 1349 |
+
raise NotImplementedError()
|
| 1350 |
+
|
| 1351 |
+
return out
|
| 1352 |
+
|
| 1353 |
+
|
| 1354 |
+
class LatentUpscaleDiffusion(LatentDiffusion):
|
| 1355 |
+
def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
|
| 1356 |
+
super().__init__(*args, **kwargs)
|
| 1357 |
+
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
| 1358 |
+
assert not self.cond_stage_trainable
|
| 1359 |
+
self.instantiate_low_stage(low_scale_config)
|
| 1360 |
+
self.low_scale_key = low_scale_key
|
| 1361 |
+
self.noise_level_key = noise_level_key
|
| 1362 |
+
|
| 1363 |
+
def instantiate_low_stage(self, config):
|
| 1364 |
+
model = instantiate_from_config(config)
|
| 1365 |
+
self.low_scale_model = model.eval()
|
| 1366 |
+
self.low_scale_model.train = disabled_train
|
| 1367 |
+
for param in self.low_scale_model.parameters():
|
| 1368 |
+
param.requires_grad = False
|
| 1369 |
+
|
| 1370 |
+
@torch.no_grad()
|
| 1371 |
+
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
| 1372 |
+
if not log_mode:
|
| 1373 |
+
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
| 1374 |
+
else:
|
| 1375 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
| 1376 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
| 1377 |
+
x_low = batch[self.low_scale_key][:bs]
|
| 1378 |
+
x_low = rearrange(x_low, 'b h w c -> b c h w')
|
| 1379 |
+
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
| 1380 |
+
zx, noise_level = self.low_scale_model(x_low)
|
| 1381 |
+
if self.noise_level_key is not None:
|
| 1382 |
+
# get noise level from batch instead, e.g. when extracting a custom noise level for bsr
|
| 1383 |
+
raise NotImplementedError('TODO')
|
| 1384 |
+
|
| 1385 |
+
all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
|
| 1386 |
+
if log_mode:
|
| 1387 |
+
# TODO: maybe disable if too expensive
|
| 1388 |
+
x_low_rec = self.low_scale_model.decode(zx)
|
| 1389 |
+
return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
|
| 1390 |
+
return z, all_conds
|
| 1391 |
+
|
| 1392 |
+
@torch.no_grad()
|
| 1393 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
| 1394 |
+
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
|
| 1395 |
+
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
|
| 1396 |
+
**kwargs):
|
| 1397 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
| 1398 |
+
use_ddim = ddim_steps is not None
|
| 1399 |
+
|
| 1400 |
+
log = dict()
|
| 1401 |
+
z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
|
| 1402 |
+
log_mode=True)
|
| 1403 |
+
N = min(x.shape[0], N)
|
| 1404 |
+
n_row = min(x.shape[0], n_row)
|
| 1405 |
+
log["inputs"] = x
|
| 1406 |
+
log["reconstruction"] = xrec
|
| 1407 |
+
log["x_lr"] = x_low
|
| 1408 |
+
log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
|
| 1409 |
+
if self.model.conditioning_key is not None:
|
| 1410 |
+
if hasattr(self.cond_stage_model, "decode"):
|
| 1411 |
+
xc = self.cond_stage_model.decode(c)
|
| 1412 |
+
log["conditioning"] = xc
|
| 1413 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
| 1414 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
| 1415 |
+
log["conditioning"] = xc
|
| 1416 |
+
elif self.cond_stage_key in ['class_label', 'cls']:
|
| 1417 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
| 1418 |
+
log['conditioning'] = xc
|
| 1419 |
+
elif isimage(xc):
|
| 1420 |
+
log["conditioning"] = xc
|
| 1421 |
+
if ismap(xc):
|
| 1422 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
| 1423 |
+
|
| 1424 |
+
if plot_diffusion_rows:
|
| 1425 |
+
# get diffusion row
|
| 1426 |
+
diffusion_row = list()
|
| 1427 |
+
z_start = z[:n_row]
|
| 1428 |
+
for t in range(self.num_timesteps):
|
| 1429 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 1430 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 1431 |
+
t = t.to(self.device).long()
|
| 1432 |
+
noise = torch.randn_like(z_start)
|
| 1433 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
| 1434 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
| 1435 |
+
|
| 1436 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
| 1437 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
| 1438 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
| 1439 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
| 1440 |
+
log["diffusion_row"] = diffusion_grid
|
| 1441 |
+
|
| 1442 |
+
if sample:
|
| 1443 |
+
# get denoise row
|
| 1444 |
+
with ema_scope("Sampling"):
|
| 1445 |
+
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
| 1446 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
| 1447 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
| 1448 |
+
x_samples = self.decode_first_stage(samples)
|
| 1449 |
+
log["samples"] = x_samples
|
| 1450 |
+
if plot_denoise_rows:
|
| 1451 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
| 1452 |
+
log["denoise_row"] = denoise_grid
|
| 1453 |
+
|
| 1454 |
+
if unconditional_guidance_scale > 1.0:
|
| 1455 |
+
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
| 1456 |
+
# TODO explore better "unconditional" choices for the other keys
|
| 1457 |
+
# maybe guide away from empty text label and highest noise level and maximally degraded zx?
|
| 1458 |
+
uc = dict()
|
| 1459 |
+
for k in c:
|
| 1460 |
+
if k == "c_crossattn":
|
| 1461 |
+
assert isinstance(c[k], list) and len(c[k]) == 1
|
| 1462 |
+
uc[k] = [uc_tmp]
|
| 1463 |
+
elif k == "c_adm": # todo: only run with text-based guidance?
|
| 1464 |
+
assert isinstance(c[k], torch.Tensor)
|
| 1465 |
+
#uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
|
| 1466 |
+
uc[k] = c[k]
|
| 1467 |
+
elif isinstance(c[k], list):
|
| 1468 |
+
uc[k] = [c[k][i] for i in range(len(c[k]))]
|
| 1469 |
+
else:
|
| 1470 |
+
uc[k] = c[k]
|
| 1471 |
+
|
| 1472 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
| 1473 |
+
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
| 1474 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
| 1475 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 1476 |
+
unconditional_conditioning=uc,
|
| 1477 |
+
)
|
| 1478 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
| 1479 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
| 1480 |
+
|
| 1481 |
+
if plot_progressive_rows:
|
| 1482 |
+
with ema_scope("Plotting Progressives"):
|
| 1483 |
+
img, progressives = self.progressive_denoising(c,
|
| 1484 |
+
shape=(self.channels, self.image_size, self.image_size),
|
| 1485 |
+
batch_size=N)
|
| 1486 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
| 1487 |
+
log["progressive_row"] = prog_row
|
| 1488 |
+
|
| 1489 |
+
return log
|
| 1490 |
+
|
| 1491 |
+
|
| 1492 |
+
class LatentFinetuneDiffusion(LatentDiffusion):
|
| 1493 |
+
"""
|
| 1494 |
+
Basis for different finetunas, such as inpainting or depth2image
|
| 1495 |
+
To disable finetuning mode, set finetune_keys to None
|
| 1496 |
+
"""
|
| 1497 |
+
|
| 1498 |
+
def __init__(self,
|
| 1499 |
+
concat_keys: tuple,
|
| 1500 |
+
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
|
| 1501 |
+
"model_ema.diffusion_modelinput_blocks00weight"
|
| 1502 |
+
),
|
| 1503 |
+
keep_finetune_dims=4,
|
| 1504 |
+
# if model was trained without concat mode before and we would like to keep these channels
|
| 1505 |
+
c_concat_log_start=None, # to log reconstruction of c_concat codes
|
| 1506 |
+
c_concat_log_end=None,
|
| 1507 |
+
*args, **kwargs
|
| 1508 |
+
):
|
| 1509 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
| 1510 |
+
ignore_keys = kwargs.pop("ignore_keys", list())
|
| 1511 |
+
super().__init__(*args, **kwargs)
|
| 1512 |
+
self.finetune_keys = finetune_keys
|
| 1513 |
+
self.concat_keys = concat_keys
|
| 1514 |
+
self.keep_dims = keep_finetune_dims
|
| 1515 |
+
self.c_concat_log_start = c_concat_log_start
|
| 1516 |
+
self.c_concat_log_end = c_concat_log_end
|
| 1517 |
+
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
|
| 1518 |
+
if exists(ckpt_path):
|
| 1519 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
| 1520 |
+
|
| 1521 |
+
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
| 1522 |
+
sd = torch.load(path, map_location="cpu")
|
| 1523 |
+
if "state_dict" in list(sd.keys()):
|
| 1524 |
+
sd = sd["state_dict"]
|
| 1525 |
+
keys = list(sd.keys())
|
| 1526 |
+
for k in keys:
|
| 1527 |
+
for ik in ignore_keys:
|
| 1528 |
+
if k.startswith(ik):
|
| 1529 |
+
print("Deleting key {} from state_dict.".format(k))
|
| 1530 |
+
del sd[k]
|
| 1531 |
+
|
| 1532 |
+
# make it explicit, finetune by including extra input channels
|
| 1533 |
+
if exists(self.finetune_keys) and k in self.finetune_keys:
|
| 1534 |
+
new_entry = None
|
| 1535 |
+
for name, param in self.named_parameters():
|
| 1536 |
+
if name in self.finetune_keys:
|
| 1537 |
+
print(
|
| 1538 |
+
f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
|
| 1539 |
+
new_entry = torch.zeros_like(param) # zero init
|
| 1540 |
+
assert exists(new_entry), 'did not find matching parameter to modify'
|
| 1541 |
+
new_entry[:, :self.keep_dims, ...] = sd[k]
|
| 1542 |
+
sd[k] = new_entry
|
| 1543 |
+
|
| 1544 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
| 1545 |
+
sd, strict=False)
|
| 1546 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
| 1547 |
+
if len(missing) > 0:
|
| 1548 |
+
print(f"Missing Keys: {missing}")
|
| 1549 |
+
if len(unexpected) > 0:
|
| 1550 |
+
print(f"Unexpected Keys: {unexpected}")
|
| 1551 |
+
|
| 1552 |
+
@torch.no_grad()
|
| 1553 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
| 1554 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
| 1555 |
+
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
| 1556 |
+
use_ema_scope=True,
|
| 1557 |
+
**kwargs):
|
| 1558 |
+
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
| 1559 |
+
use_ddim = ddim_steps is not None
|
| 1560 |
+
|
| 1561 |
+
log = dict()
|
| 1562 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
|
| 1563 |
+
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
|
| 1564 |
+
N = min(x.shape[0], N)
|
| 1565 |
+
n_row = min(x.shape[0], n_row)
|
| 1566 |
+
log["inputs"] = x
|
| 1567 |
+
log["reconstruction"] = xrec
|
| 1568 |
+
if self.model.conditioning_key is not None:
|
| 1569 |
+
if hasattr(self.cond_stage_model, "decode"):
|
| 1570 |
+
xc = self.cond_stage_model.decode(c)
|
| 1571 |
+
log["conditioning"] = xc
|
| 1572 |
+
elif self.cond_stage_key in ["caption", "txt"]:
|
| 1573 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
| 1574 |
+
log["conditioning"] = xc
|
| 1575 |
+
elif self.cond_stage_key in ['class_label', 'cls']:
|
| 1576 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
| 1577 |
+
log['conditioning'] = xc
|
| 1578 |
+
elif isimage(xc):
|
| 1579 |
+
log["conditioning"] = xc
|
| 1580 |
+
if ismap(xc):
|
| 1581 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
| 1582 |
+
|
| 1583 |
+
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
|
| 1584 |
+
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
|
| 1585 |
+
|
| 1586 |
+
if plot_diffusion_rows:
|
| 1587 |
+
# get diffusion row
|
| 1588 |
+
diffusion_row = list()
|
| 1589 |
+
z_start = z[:n_row]
|
| 1590 |
+
for t in range(self.num_timesteps):
|
| 1591 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
| 1592 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
| 1593 |
+
t = t.to(self.device).long()
|
| 1594 |
+
noise = torch.randn_like(z_start)
|
| 1595 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
| 1596 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
| 1597 |
+
|
| 1598 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
| 1599 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
| 1600 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
| 1601 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
| 1602 |
+
log["diffusion_row"] = diffusion_grid
|
| 1603 |
+
|
| 1604 |
+
if sample:
|
| 1605 |
+
# get denoise row
|
| 1606 |
+
with ema_scope("Sampling"):
|
| 1607 |
+
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
| 1608 |
+
batch_size=N, ddim=use_ddim,
|
| 1609 |
+
ddim_steps=ddim_steps, eta=ddim_eta)
|
| 1610 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
| 1611 |
+
x_samples = self.decode_first_stage(samples)
|
| 1612 |
+
log["samples"] = x_samples
|
| 1613 |
+
if plot_denoise_rows:
|
| 1614 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
| 1615 |
+
log["denoise_row"] = denoise_grid
|
| 1616 |
+
|
| 1617 |
+
if unconditional_guidance_scale > 1.0:
|
| 1618 |
+
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
| 1619 |
+
uc_cat = c_cat
|
| 1620 |
+
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
| 1621 |
+
with ema_scope("Sampling with classifier-free guidance"):
|
| 1622 |
+
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
| 1623 |
+
batch_size=N, ddim=use_ddim,
|
| 1624 |
+
ddim_steps=ddim_steps, eta=ddim_eta,
|
| 1625 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 1626 |
+
unconditional_conditioning=uc_full,
|
| 1627 |
+
)
|
| 1628 |
+
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
| 1629 |
+
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
| 1630 |
+
|
| 1631 |
+
return log
|
| 1632 |
+
|
| 1633 |
+
|
| 1634 |
+
class LatentInpaintDiffusion(LatentFinetuneDiffusion):
|
| 1635 |
+
"""
|
| 1636 |
+
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
|
| 1637 |
+
e.g. mask as concat and text via cross-attn.
|
| 1638 |
+
To disable finetuning mode, set finetune_keys to None
|
| 1639 |
+
"""
|
| 1640 |
+
|
| 1641 |
+
def __init__(self,
|
| 1642 |
+
concat_keys=("mask", "masked_image"),
|
| 1643 |
+
masked_image_key="masked_image",
|
| 1644 |
+
*args, **kwargs
|
| 1645 |
+
):
|
| 1646 |
+
super().__init__(concat_keys, *args, **kwargs)
|
| 1647 |
+
self.masked_image_key = masked_image_key
|
| 1648 |
+
assert self.masked_image_key in concat_keys
|
| 1649 |
+
|
| 1650 |
+
@torch.no_grad()
|
| 1651 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
| 1652 |
+
# note: restricted to non-trainable encoders currently
|
| 1653 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
|
| 1654 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
| 1655 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
| 1656 |
+
|
| 1657 |
+
assert exists(self.concat_keys)
|
| 1658 |
+
c_cat = list()
|
| 1659 |
+
for ck in self.concat_keys:
|
| 1660 |
+
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
| 1661 |
+
if bs is not None:
|
| 1662 |
+
cc = cc[:bs]
|
| 1663 |
+
cc = cc.to(self.device)
|
| 1664 |
+
bchw = z.shape
|
| 1665 |
+
if ck != self.masked_image_key:
|
| 1666 |
+
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
| 1667 |
+
else:
|
| 1668 |
+
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
|
| 1669 |
+
c_cat.append(cc)
|
| 1670 |
+
c_cat = torch.cat(c_cat, dim=1)
|
| 1671 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
| 1672 |
+
if return_first_stage_outputs:
|
| 1673 |
+
return z, all_conds, x, xrec, xc
|
| 1674 |
+
return z, all_conds
|
| 1675 |
+
|
| 1676 |
+
@torch.no_grad()
|
| 1677 |
+
def log_images(self, *args, **kwargs):
|
| 1678 |
+
log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
|
| 1679 |
+
log["masked_image"] = rearrange(args[0]["masked_image"],
|
| 1680 |
+
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
| 1681 |
+
return log
|
| 1682 |
+
|
| 1683 |
+
|
| 1684 |
+
class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
|
| 1685 |
+
"""
|
| 1686 |
+
condition on monocular depth estimation
|
| 1687 |
+
"""
|
| 1688 |
+
|
| 1689 |
+
def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
|
| 1690 |
+
super().__init__(concat_keys=concat_keys, *args, **kwargs)
|
| 1691 |
+
self.depth_model = instantiate_from_config(depth_stage_config)
|
| 1692 |
+
self.depth_stage_key = concat_keys[0]
|
| 1693 |
+
|
| 1694 |
+
@torch.no_grad()
|
| 1695 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
| 1696 |
+
# note: restricted to non-trainable encoders currently
|
| 1697 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
|
| 1698 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
| 1699 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
| 1700 |
+
|
| 1701 |
+
assert exists(self.concat_keys)
|
| 1702 |
+
assert len(self.concat_keys) == 1
|
| 1703 |
+
c_cat = list()
|
| 1704 |
+
for ck in self.concat_keys:
|
| 1705 |
+
cc = batch[ck]
|
| 1706 |
+
if bs is not None:
|
| 1707 |
+
cc = cc[:bs]
|
| 1708 |
+
cc = cc.to(self.device)
|
| 1709 |
+
cc = self.depth_model(cc)
|
| 1710 |
+
cc = torch.nn.functional.interpolate(
|
| 1711 |
+
cc,
|
| 1712 |
+
size=z.shape[2:],
|
| 1713 |
+
mode="bicubic",
|
| 1714 |
+
align_corners=False,
|
| 1715 |
+
)
|
| 1716 |
+
|
| 1717 |
+
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
|
| 1718 |
+
keepdim=True)
|
| 1719 |
+
cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
|
| 1720 |
+
c_cat.append(cc)
|
| 1721 |
+
c_cat = torch.cat(c_cat, dim=1)
|
| 1722 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
| 1723 |
+
if return_first_stage_outputs:
|
| 1724 |
+
return z, all_conds, x, xrec, xc
|
| 1725 |
+
return z, all_conds
|
| 1726 |
+
|
| 1727 |
+
@torch.no_grad()
|
| 1728 |
+
def log_images(self, *args, **kwargs):
|
| 1729 |
+
log = super().log_images(*args, **kwargs)
|
| 1730 |
+
depth = self.depth_model(args[0][self.depth_stage_key])
|
| 1731 |
+
depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
|
| 1732 |
+
torch.amax(depth, dim=[1, 2, 3], keepdim=True)
|
| 1733 |
+
log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
|
| 1734 |
+
return log
|
| 1735 |
+
|
| 1736 |
+
|
| 1737 |
+
class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
|
| 1738 |
+
"""
|
| 1739 |
+
condition on low-res image (and optionally on some spatial noise augmentation)
|
| 1740 |
+
"""
|
| 1741 |
+
def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
|
| 1742 |
+
low_scale_config=None, low_scale_key=None, *args, **kwargs):
|
| 1743 |
+
super().__init__(concat_keys=concat_keys, *args, **kwargs)
|
| 1744 |
+
self.reshuffle_patch_size = reshuffle_patch_size
|
| 1745 |
+
self.low_scale_model = None
|
| 1746 |
+
if low_scale_config is not None:
|
| 1747 |
+
print("Initializing a low-scale model")
|
| 1748 |
+
assert exists(low_scale_key)
|
| 1749 |
+
self.instantiate_low_stage(low_scale_config)
|
| 1750 |
+
self.low_scale_key = low_scale_key
|
| 1751 |
+
|
| 1752 |
+
def instantiate_low_stage(self, config):
|
| 1753 |
+
model = instantiate_from_config(config)
|
| 1754 |
+
self.low_scale_model = model.eval()
|
| 1755 |
+
self.low_scale_model.train = disabled_train
|
| 1756 |
+
for param in self.low_scale_model.parameters():
|
| 1757 |
+
param.requires_grad = False
|
| 1758 |
+
|
| 1759 |
+
@torch.no_grad()
|
| 1760 |
+
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
| 1761 |
+
# note: restricted to non-trainable encoders currently
|
| 1762 |
+
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
|
| 1763 |
+
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
| 1764 |
+
force_c_encode=True, return_original_cond=True, bs=bs)
|
| 1765 |
+
|
| 1766 |
+
assert exists(self.concat_keys)
|
| 1767 |
+
assert len(self.concat_keys) == 1
|
| 1768 |
+
# optionally make spatial noise_level here
|
| 1769 |
+
c_cat = list()
|
| 1770 |
+
noise_level = None
|
| 1771 |
+
for ck in self.concat_keys:
|
| 1772 |
+
cc = batch[ck]
|
| 1773 |
+
cc = rearrange(cc, 'b h w c -> b c h w')
|
| 1774 |
+
if exists(self.reshuffle_patch_size):
|
| 1775 |
+
assert isinstance(self.reshuffle_patch_size, int)
|
| 1776 |
+
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
|
| 1777 |
+
p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
|
| 1778 |
+
if bs is not None:
|
| 1779 |
+
cc = cc[:bs]
|
| 1780 |
+
cc = cc.to(self.device)
|
| 1781 |
+
if exists(self.low_scale_model) and ck == self.low_scale_key:
|
| 1782 |
+
cc, noise_level = self.low_scale_model(cc)
|
| 1783 |
+
c_cat.append(cc)
|
| 1784 |
+
c_cat = torch.cat(c_cat, dim=1)
|
| 1785 |
+
if exists(noise_level):
|
| 1786 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
|
| 1787 |
+
else:
|
| 1788 |
+
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
| 1789 |
+
if return_first_stage_outputs:
|
| 1790 |
+
return z, all_conds, x, xrec, xc
|
| 1791 |
+
return z, all_conds
|
| 1792 |
+
|
| 1793 |
+
@torch.no_grad()
|
| 1794 |
+
def log_images(self, *args, **kwargs):
|
| 1795 |
+
log = super().log_images(*args, **kwargs)
|
| 1796 |
+
log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
|
| 1797 |
+
return log
|
ControlNet/ldm/models/diffusion/dpm_solver/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .sampler import DPMSolverSampler
|
ControlNet/ldm/models/diffusion/dpm_solver/dpm_solver.py
ADDED
|
@@ -0,0 +1,1154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import math
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class NoiseScheduleVP:
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
schedule='discrete',
|
| 11 |
+
betas=None,
|
| 12 |
+
alphas_cumprod=None,
|
| 13 |
+
continuous_beta_0=0.1,
|
| 14 |
+
continuous_beta_1=20.,
|
| 15 |
+
):
|
| 16 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
| 17 |
+
***
|
| 18 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
| 19 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
| 20 |
+
***
|
| 21 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
| 22 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
| 23 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
| 24 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
| 25 |
+
sigma_t = self.marginal_std(t)
|
| 26 |
+
lambda_t = self.marginal_lambda(t)
|
| 27 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
| 28 |
+
t = self.inverse_lambda(lambda_t)
|
| 29 |
+
===============================================================
|
| 30 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
| 31 |
+
1. For discrete-time DPMs:
|
| 32 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
| 33 |
+
t_i = (i + 1) / N
|
| 34 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
| 35 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
| 36 |
+
Args:
|
| 37 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
| 38 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
| 39 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
| 40 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
| 41 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
| 42 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
| 43 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
| 44 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
| 45 |
+
and
|
| 46 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
| 47 |
+
2. For continuous-time DPMs:
|
| 48 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
| 49 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
| 50 |
+
Args:
|
| 51 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
| 52 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
| 53 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
| 54 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
| 55 |
+
T: A `float` number. The ending time of the forward process.
|
| 56 |
+
===============================================================
|
| 57 |
+
Args:
|
| 58 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
| 59 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
| 60 |
+
Returns:
|
| 61 |
+
A wrapper object of the forward SDE (VP type).
|
| 62 |
+
|
| 63 |
+
===============================================================
|
| 64 |
+
Example:
|
| 65 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
| 66 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
| 67 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
| 68 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
| 69 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
| 70 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
| 74 |
+
raise ValueError(
|
| 75 |
+
"Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
|
| 76 |
+
schedule))
|
| 77 |
+
|
| 78 |
+
self.schedule = schedule
|
| 79 |
+
if schedule == 'discrete':
|
| 80 |
+
if betas is not None:
|
| 81 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
| 82 |
+
else:
|
| 83 |
+
assert alphas_cumprod is not None
|
| 84 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
| 85 |
+
self.total_N = len(log_alphas)
|
| 86 |
+
self.T = 1.
|
| 87 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
| 88 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
| 89 |
+
else:
|
| 90 |
+
self.total_N = 1000
|
| 91 |
+
self.beta_0 = continuous_beta_0
|
| 92 |
+
self.beta_1 = continuous_beta_1
|
| 93 |
+
self.cosine_s = 0.008
|
| 94 |
+
self.cosine_beta_max = 999.
|
| 95 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
|
| 96 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
| 97 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
| 98 |
+
self.schedule = schedule
|
| 99 |
+
if schedule == 'cosine':
|
| 100 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
| 101 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
| 102 |
+
self.T = 0.9946
|
| 103 |
+
else:
|
| 104 |
+
self.T = 1.
|
| 105 |
+
|
| 106 |
+
def marginal_log_mean_coeff(self, t):
|
| 107 |
+
"""
|
| 108 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
| 109 |
+
"""
|
| 110 |
+
if self.schedule == 'discrete':
|
| 111 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
|
| 112 |
+
self.log_alpha_array.to(t.device)).reshape((-1))
|
| 113 |
+
elif self.schedule == 'linear':
|
| 114 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
| 115 |
+
elif self.schedule == 'cosine':
|
| 116 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
| 117 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
| 118 |
+
return log_alpha_t
|
| 119 |
+
|
| 120 |
+
def marginal_alpha(self, t):
|
| 121 |
+
"""
|
| 122 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
| 123 |
+
"""
|
| 124 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
| 125 |
+
|
| 126 |
+
def marginal_std(self, t):
|
| 127 |
+
"""
|
| 128 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
| 129 |
+
"""
|
| 130 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
| 131 |
+
|
| 132 |
+
def marginal_lambda(self, t):
|
| 133 |
+
"""
|
| 134 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
| 135 |
+
"""
|
| 136 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
| 137 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
| 138 |
+
return log_mean_coeff - log_std
|
| 139 |
+
|
| 140 |
+
def inverse_lambda(self, lamb):
|
| 141 |
+
"""
|
| 142 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
| 143 |
+
"""
|
| 144 |
+
if self.schedule == 'linear':
|
| 145 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
| 146 |
+
Delta = self.beta_0 ** 2 + tmp
|
| 147 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
| 148 |
+
elif self.schedule == 'discrete':
|
| 149 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
| 150 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
|
| 151 |
+
torch.flip(self.t_array.to(lamb.device), [1]))
|
| 152 |
+
return t.reshape((-1,))
|
| 153 |
+
else:
|
| 154 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
| 155 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
|
| 156 |
+
1. + self.cosine_s) / math.pi - self.cosine_s
|
| 157 |
+
t = t_fn(log_alpha)
|
| 158 |
+
return t
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def model_wrapper(
|
| 162 |
+
model,
|
| 163 |
+
noise_schedule,
|
| 164 |
+
model_type="noise",
|
| 165 |
+
model_kwargs={},
|
| 166 |
+
guidance_type="uncond",
|
| 167 |
+
condition=None,
|
| 168 |
+
unconditional_condition=None,
|
| 169 |
+
guidance_scale=1.,
|
| 170 |
+
classifier_fn=None,
|
| 171 |
+
classifier_kwargs={},
|
| 172 |
+
):
|
| 173 |
+
"""Create a wrapper function for the noise prediction model.
|
| 174 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
| 175 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
| 176 |
+
We support four types of the diffusion model by setting `model_type`:
|
| 177 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
| 178 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
| 179 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
| 180 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
| 181 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
| 182 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
| 183 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
| 184 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
| 185 |
+
|
| 186 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
| 187 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
| 188 |
+
```
|
| 189 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
| 190 |
+
```
|
| 191 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
| 192 |
+
1. "uncond": unconditional sampling by DPMs.
|
| 193 |
+
The input `model` has the following format:
|
| 194 |
+
``
|
| 195 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
| 196 |
+
``
|
| 197 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
| 198 |
+
The input `model` has the following format:
|
| 199 |
+
``
|
| 200 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
| 201 |
+
``
|
| 202 |
+
The input `classifier_fn` has the following format:
|
| 203 |
+
``
|
| 204 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
| 205 |
+
``
|
| 206 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
| 207 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
| 208 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
| 209 |
+
The input `model` has the following format:
|
| 210 |
+
``
|
| 211 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
| 212 |
+
``
|
| 213 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
| 214 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
| 215 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
| 216 |
+
|
| 217 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
| 218 |
+
or continuous-time labels (i.e. epsilon to T).
|
| 219 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
| 220 |
+
``
|
| 221 |
+
def model_fn(x, t_continuous) -> noise:
|
| 222 |
+
t_input = get_model_input_time(t_continuous)
|
| 223 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
| 224 |
+
``
|
| 225 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
| 226 |
+
===============================================================
|
| 227 |
+
Args:
|
| 228 |
+
model: A diffusion model with the corresponding format described above.
|
| 229 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
| 230 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
| 231 |
+
"noise" or "x_start" or "v" or "score".
|
| 232 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
| 233 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
| 234 |
+
"uncond" or "classifier" or "classifier-free".
|
| 235 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
| 236 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
| 237 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
| 238 |
+
Only used for "classifier-free" guidance type.
|
| 239 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
| 240 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
| 241 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
| 242 |
+
Returns:
|
| 243 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
def get_model_input_time(t_continuous):
|
| 247 |
+
"""
|
| 248 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
| 249 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
| 250 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
| 251 |
+
"""
|
| 252 |
+
if noise_schedule.schedule == 'discrete':
|
| 253 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
| 254 |
+
else:
|
| 255 |
+
return t_continuous
|
| 256 |
+
|
| 257 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
| 258 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
| 259 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
| 260 |
+
t_input = get_model_input_time(t_continuous)
|
| 261 |
+
if cond is None:
|
| 262 |
+
output = model(x, t_input, **model_kwargs)
|
| 263 |
+
else:
|
| 264 |
+
output = model(x, t_input, cond, **model_kwargs)
|
| 265 |
+
if model_type == "noise":
|
| 266 |
+
return output
|
| 267 |
+
elif model_type == "x_start":
|
| 268 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
| 269 |
+
dims = x.dim()
|
| 270 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
| 271 |
+
elif model_type == "v":
|
| 272 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
| 273 |
+
dims = x.dim()
|
| 274 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
| 275 |
+
elif model_type == "score":
|
| 276 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
| 277 |
+
dims = x.dim()
|
| 278 |
+
return -expand_dims(sigma_t, dims) * output
|
| 279 |
+
|
| 280 |
+
def cond_grad_fn(x, t_input):
|
| 281 |
+
"""
|
| 282 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
| 283 |
+
"""
|
| 284 |
+
with torch.enable_grad():
|
| 285 |
+
x_in = x.detach().requires_grad_(True)
|
| 286 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
| 287 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
| 288 |
+
|
| 289 |
+
def model_fn(x, t_continuous):
|
| 290 |
+
"""
|
| 291 |
+
The noise predicition model function that is used for DPM-Solver.
|
| 292 |
+
"""
|
| 293 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
| 294 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
| 295 |
+
if guidance_type == "uncond":
|
| 296 |
+
return noise_pred_fn(x, t_continuous)
|
| 297 |
+
elif guidance_type == "classifier":
|
| 298 |
+
assert classifier_fn is not None
|
| 299 |
+
t_input = get_model_input_time(t_continuous)
|
| 300 |
+
cond_grad = cond_grad_fn(x, t_input)
|
| 301 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
| 302 |
+
noise = noise_pred_fn(x, t_continuous)
|
| 303 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
| 304 |
+
elif guidance_type == "classifier-free":
|
| 305 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
| 306 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
| 307 |
+
else:
|
| 308 |
+
x_in = torch.cat([x] * 2)
|
| 309 |
+
t_in = torch.cat([t_continuous] * 2)
|
| 310 |
+
c_in = torch.cat([unconditional_condition, condition])
|
| 311 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
| 312 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
| 313 |
+
|
| 314 |
+
assert model_type in ["noise", "x_start", "v"]
|
| 315 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
| 316 |
+
return model_fn
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class DPM_Solver:
|
| 320 |
+
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
|
| 321 |
+
"""Construct a DPM-Solver.
|
| 322 |
+
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
|
| 323 |
+
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
|
| 324 |
+
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
|
| 325 |
+
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
|
| 326 |
+
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
|
| 327 |
+
Args:
|
| 328 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
| 329 |
+
``
|
| 330 |
+
def model_fn(x, t_continuous):
|
| 331 |
+
return noise
|
| 332 |
+
``
|
| 333 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
| 334 |
+
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
|
| 335 |
+
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
|
| 336 |
+
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
|
| 337 |
+
|
| 338 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
| 339 |
+
"""
|
| 340 |
+
self.model = model_fn
|
| 341 |
+
self.noise_schedule = noise_schedule
|
| 342 |
+
self.predict_x0 = predict_x0
|
| 343 |
+
self.thresholding = thresholding
|
| 344 |
+
self.max_val = max_val
|
| 345 |
+
|
| 346 |
+
def noise_prediction_fn(self, x, t):
|
| 347 |
+
"""
|
| 348 |
+
Return the noise prediction model.
|
| 349 |
+
"""
|
| 350 |
+
return self.model(x, t)
|
| 351 |
+
|
| 352 |
+
def data_prediction_fn(self, x, t):
|
| 353 |
+
"""
|
| 354 |
+
Return the data prediction model (with thresholding).
|
| 355 |
+
"""
|
| 356 |
+
noise = self.noise_prediction_fn(x, t)
|
| 357 |
+
dims = x.dim()
|
| 358 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
| 359 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
| 360 |
+
if self.thresholding:
|
| 361 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
| 362 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
| 363 |
+
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
| 364 |
+
x0 = torch.clamp(x0, -s, s) / s
|
| 365 |
+
return x0
|
| 366 |
+
|
| 367 |
+
def model_fn(self, x, t):
|
| 368 |
+
"""
|
| 369 |
+
Convert the model to the noise prediction model or the data prediction model.
|
| 370 |
+
"""
|
| 371 |
+
if self.predict_x0:
|
| 372 |
+
return self.data_prediction_fn(x, t)
|
| 373 |
+
else:
|
| 374 |
+
return self.noise_prediction_fn(x, t)
|
| 375 |
+
|
| 376 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
| 377 |
+
"""Compute the intermediate time steps for sampling.
|
| 378 |
+
Args:
|
| 379 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
| 380 |
+
- 'logSNR': uniform logSNR for the time steps.
|
| 381 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
| 382 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
| 383 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
| 384 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
| 385 |
+
N: A `int`. The total number of the spacing of the time steps.
|
| 386 |
+
device: A torch device.
|
| 387 |
+
Returns:
|
| 388 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
| 389 |
+
"""
|
| 390 |
+
if skip_type == 'logSNR':
|
| 391 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
| 392 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
| 393 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
| 394 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
| 395 |
+
elif skip_type == 'time_uniform':
|
| 396 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
| 397 |
+
elif skip_type == 'time_quadratic':
|
| 398 |
+
t_order = 2
|
| 399 |
+
t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
|
| 400 |
+
return t
|
| 401 |
+
else:
|
| 402 |
+
raise ValueError(
|
| 403 |
+
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
| 404 |
+
|
| 405 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
| 406 |
+
"""
|
| 407 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
| 408 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
| 409 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
| 410 |
+
- If order == 1:
|
| 411 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
| 412 |
+
- If order == 2:
|
| 413 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
| 414 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
| 415 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 416 |
+
- If order == 3:
|
| 417 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
| 418 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 419 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
| 420 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
| 421 |
+
============================================
|
| 422 |
+
Args:
|
| 423 |
+
order: A `int`. The max order for the solver (2 or 3).
|
| 424 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
| 425 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
| 426 |
+
- 'logSNR': uniform logSNR for the time steps.
|
| 427 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
| 428 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
| 429 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
| 430 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
| 431 |
+
device: A torch device.
|
| 432 |
+
Returns:
|
| 433 |
+
orders: A list of the solver order of each step.
|
| 434 |
+
"""
|
| 435 |
+
if order == 3:
|
| 436 |
+
K = steps // 3 + 1
|
| 437 |
+
if steps % 3 == 0:
|
| 438 |
+
orders = [3, ] * (K - 2) + [2, 1]
|
| 439 |
+
elif steps % 3 == 1:
|
| 440 |
+
orders = [3, ] * (K - 1) + [1]
|
| 441 |
+
else:
|
| 442 |
+
orders = [3, ] * (K - 1) + [2]
|
| 443 |
+
elif order == 2:
|
| 444 |
+
if steps % 2 == 0:
|
| 445 |
+
K = steps // 2
|
| 446 |
+
orders = [2, ] * K
|
| 447 |
+
else:
|
| 448 |
+
K = steps // 2 + 1
|
| 449 |
+
orders = [2, ] * (K - 1) + [1]
|
| 450 |
+
elif order == 1:
|
| 451 |
+
K = 1
|
| 452 |
+
orders = [1, ] * steps
|
| 453 |
+
else:
|
| 454 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
| 455 |
+
if skip_type == 'logSNR':
|
| 456 |
+
# To reproduce the results in DPM-Solver paper
|
| 457 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
| 458 |
+
else:
|
| 459 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
|
| 460 |
+
torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
|
| 461 |
+
return timesteps_outer, orders
|
| 462 |
+
|
| 463 |
+
def denoise_to_zero_fn(self, x, s):
|
| 464 |
+
"""
|
| 465 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
| 466 |
+
"""
|
| 467 |
+
return self.data_prediction_fn(x, s)
|
| 468 |
+
|
| 469 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
| 470 |
+
"""
|
| 471 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
| 472 |
+
Args:
|
| 473 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 474 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
| 475 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 476 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
| 477 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
| 478 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
| 479 |
+
Returns:
|
| 480 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 481 |
+
"""
|
| 482 |
+
ns = self.noise_schedule
|
| 483 |
+
dims = x.dim()
|
| 484 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
| 485 |
+
h = lambda_t - lambda_s
|
| 486 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
| 487 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
| 488 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 489 |
+
|
| 490 |
+
if self.predict_x0:
|
| 491 |
+
phi_1 = torch.expm1(-h)
|
| 492 |
+
if model_s is None:
|
| 493 |
+
model_s = self.model_fn(x, s)
|
| 494 |
+
x_t = (
|
| 495 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
| 496 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
| 497 |
+
)
|
| 498 |
+
if return_intermediate:
|
| 499 |
+
return x_t, {'model_s': model_s}
|
| 500 |
+
else:
|
| 501 |
+
return x_t
|
| 502 |
+
else:
|
| 503 |
+
phi_1 = torch.expm1(h)
|
| 504 |
+
if model_s is None:
|
| 505 |
+
model_s = self.model_fn(x, s)
|
| 506 |
+
x_t = (
|
| 507 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
| 508 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
| 509 |
+
)
|
| 510 |
+
if return_intermediate:
|
| 511 |
+
return x_t, {'model_s': model_s}
|
| 512 |
+
else:
|
| 513 |
+
return x_t
|
| 514 |
+
|
| 515 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
|
| 516 |
+
solver_type='dpm_solver'):
|
| 517 |
+
"""
|
| 518 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
| 519 |
+
Args:
|
| 520 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 521 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
| 522 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 523 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
| 524 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
| 525 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
| 526 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
| 527 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 528 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 529 |
+
Returns:
|
| 530 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 531 |
+
"""
|
| 532 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
| 533 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
| 534 |
+
if r1 is None:
|
| 535 |
+
r1 = 0.5
|
| 536 |
+
ns = self.noise_schedule
|
| 537 |
+
dims = x.dim()
|
| 538 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
| 539 |
+
h = lambda_t - lambda_s
|
| 540 |
+
lambda_s1 = lambda_s + r1 * h
|
| 541 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
| 542 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
|
| 543 |
+
s1), ns.marginal_log_mean_coeff(t)
|
| 544 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
| 545 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
| 546 |
+
|
| 547 |
+
if self.predict_x0:
|
| 548 |
+
phi_11 = torch.expm1(-r1 * h)
|
| 549 |
+
phi_1 = torch.expm1(-h)
|
| 550 |
+
|
| 551 |
+
if model_s is None:
|
| 552 |
+
model_s = self.model_fn(x, s)
|
| 553 |
+
x_s1 = (
|
| 554 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
| 555 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
| 556 |
+
)
|
| 557 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 558 |
+
if solver_type == 'dpm_solver':
|
| 559 |
+
x_t = (
|
| 560 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
| 561 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
| 562 |
+
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
| 563 |
+
)
|
| 564 |
+
elif solver_type == 'taylor':
|
| 565 |
+
x_t = (
|
| 566 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
| 567 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
| 568 |
+
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
|
| 569 |
+
model_s1 - model_s)
|
| 570 |
+
)
|
| 571 |
+
else:
|
| 572 |
+
phi_11 = torch.expm1(r1 * h)
|
| 573 |
+
phi_1 = torch.expm1(h)
|
| 574 |
+
|
| 575 |
+
if model_s is None:
|
| 576 |
+
model_s = self.model_fn(x, s)
|
| 577 |
+
x_s1 = (
|
| 578 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
| 579 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
| 580 |
+
)
|
| 581 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 582 |
+
if solver_type == 'dpm_solver':
|
| 583 |
+
x_t = (
|
| 584 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
| 585 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
| 586 |
+
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
| 587 |
+
)
|
| 588 |
+
elif solver_type == 'taylor':
|
| 589 |
+
x_t = (
|
| 590 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
| 591 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
| 592 |
+
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
| 593 |
+
)
|
| 594 |
+
if return_intermediate:
|
| 595 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
| 596 |
+
else:
|
| 597 |
+
return x_t
|
| 598 |
+
|
| 599 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
|
| 600 |
+
return_intermediate=False, solver_type='dpm_solver'):
|
| 601 |
+
"""
|
| 602 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
| 603 |
+
Args:
|
| 604 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 605 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
| 606 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 607 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
| 608 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
| 609 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
| 610 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
| 611 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
| 612 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
| 613 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
| 614 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 615 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 616 |
+
Returns:
|
| 617 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 618 |
+
"""
|
| 619 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
| 620 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
| 621 |
+
if r1 is None:
|
| 622 |
+
r1 = 1. / 3.
|
| 623 |
+
if r2 is None:
|
| 624 |
+
r2 = 2. / 3.
|
| 625 |
+
ns = self.noise_schedule
|
| 626 |
+
dims = x.dim()
|
| 627 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
| 628 |
+
h = lambda_t - lambda_s
|
| 629 |
+
lambda_s1 = lambda_s + r1 * h
|
| 630 |
+
lambda_s2 = lambda_s + r2 * h
|
| 631 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
| 632 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
| 633 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
|
| 634 |
+
s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
| 635 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
|
| 636 |
+
s2), ns.marginal_std(t)
|
| 637 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
| 638 |
+
|
| 639 |
+
if self.predict_x0:
|
| 640 |
+
phi_11 = torch.expm1(-r1 * h)
|
| 641 |
+
phi_12 = torch.expm1(-r2 * h)
|
| 642 |
+
phi_1 = torch.expm1(-h)
|
| 643 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
| 644 |
+
phi_2 = phi_1 / h + 1.
|
| 645 |
+
phi_3 = phi_2 / h - 0.5
|
| 646 |
+
|
| 647 |
+
if model_s is None:
|
| 648 |
+
model_s = self.model_fn(x, s)
|
| 649 |
+
if model_s1 is None:
|
| 650 |
+
x_s1 = (
|
| 651 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
| 652 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
| 653 |
+
)
|
| 654 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 655 |
+
x_s2 = (
|
| 656 |
+
expand_dims(sigma_s2 / sigma_s, dims) * x
|
| 657 |
+
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
| 658 |
+
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
| 659 |
+
)
|
| 660 |
+
model_s2 = self.model_fn(x_s2, s2)
|
| 661 |
+
if solver_type == 'dpm_solver':
|
| 662 |
+
x_t = (
|
| 663 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
| 664 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
| 665 |
+
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
| 666 |
+
)
|
| 667 |
+
elif solver_type == 'taylor':
|
| 668 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
| 669 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
| 670 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
| 671 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
| 672 |
+
x_t = (
|
| 673 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
| 674 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
| 675 |
+
+ expand_dims(alpha_t * phi_2, dims) * D1
|
| 676 |
+
- expand_dims(alpha_t * phi_3, dims) * D2
|
| 677 |
+
)
|
| 678 |
+
else:
|
| 679 |
+
phi_11 = torch.expm1(r1 * h)
|
| 680 |
+
phi_12 = torch.expm1(r2 * h)
|
| 681 |
+
phi_1 = torch.expm1(h)
|
| 682 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
| 683 |
+
phi_2 = phi_1 / h - 1.
|
| 684 |
+
phi_3 = phi_2 / h - 0.5
|
| 685 |
+
|
| 686 |
+
if model_s is None:
|
| 687 |
+
model_s = self.model_fn(x, s)
|
| 688 |
+
if model_s1 is None:
|
| 689 |
+
x_s1 = (
|
| 690 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
| 691 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
| 692 |
+
)
|
| 693 |
+
model_s1 = self.model_fn(x_s1, s1)
|
| 694 |
+
x_s2 = (
|
| 695 |
+
expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
|
| 696 |
+
- expand_dims(sigma_s2 * phi_12, dims) * model_s
|
| 697 |
+
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
|
| 698 |
+
)
|
| 699 |
+
model_s2 = self.model_fn(x_s2, s2)
|
| 700 |
+
if solver_type == 'dpm_solver':
|
| 701 |
+
x_t = (
|
| 702 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
| 703 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
| 704 |
+
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
|
| 705 |
+
)
|
| 706 |
+
elif solver_type == 'taylor':
|
| 707 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
| 708 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
| 709 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
| 710 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
| 711 |
+
x_t = (
|
| 712 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
| 713 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
| 714 |
+
- expand_dims(sigma_t * phi_2, dims) * D1
|
| 715 |
+
- expand_dims(sigma_t * phi_3, dims) * D2
|
| 716 |
+
)
|
| 717 |
+
|
| 718 |
+
if return_intermediate:
|
| 719 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
| 720 |
+
else:
|
| 721 |
+
return x_t
|
| 722 |
+
|
| 723 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
|
| 724 |
+
"""
|
| 725 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
| 726 |
+
Args:
|
| 727 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 728 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
| 729 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
| 730 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 731 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 732 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 733 |
+
Returns:
|
| 734 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 735 |
+
"""
|
| 736 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
| 737 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
| 738 |
+
ns = self.noise_schedule
|
| 739 |
+
dims = x.dim()
|
| 740 |
+
model_prev_1, model_prev_0 = model_prev_list
|
| 741 |
+
t_prev_1, t_prev_0 = t_prev_list
|
| 742 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
|
| 743 |
+
t_prev_0), ns.marginal_lambda(t)
|
| 744 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
| 745 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
| 746 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 747 |
+
|
| 748 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
| 749 |
+
h = lambda_t - lambda_prev_0
|
| 750 |
+
r0 = h_0 / h
|
| 751 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
| 752 |
+
if self.predict_x0:
|
| 753 |
+
if solver_type == 'dpm_solver':
|
| 754 |
+
x_t = (
|
| 755 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
| 756 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
| 757 |
+
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
|
| 758 |
+
)
|
| 759 |
+
elif solver_type == 'taylor':
|
| 760 |
+
x_t = (
|
| 761 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
| 762 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
| 763 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
|
| 764 |
+
)
|
| 765 |
+
else:
|
| 766 |
+
if solver_type == 'dpm_solver':
|
| 767 |
+
x_t = (
|
| 768 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
| 769 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
| 770 |
+
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
|
| 771 |
+
)
|
| 772 |
+
elif solver_type == 'taylor':
|
| 773 |
+
x_t = (
|
| 774 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
| 775 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
| 776 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
|
| 777 |
+
)
|
| 778 |
+
return x_t
|
| 779 |
+
|
| 780 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
|
| 781 |
+
"""
|
| 782 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
| 783 |
+
Args:
|
| 784 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 785 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
| 786 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
| 787 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 788 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 789 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 790 |
+
Returns:
|
| 791 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 792 |
+
"""
|
| 793 |
+
ns = self.noise_schedule
|
| 794 |
+
dims = x.dim()
|
| 795 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
| 796 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
| 797 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
|
| 798 |
+
t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
| 799 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
| 800 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
| 801 |
+
alpha_t = torch.exp(log_alpha_t)
|
| 802 |
+
|
| 803 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
| 804 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
| 805 |
+
h = lambda_t - lambda_prev_0
|
| 806 |
+
r0, r1 = h_0 / h, h_1 / h
|
| 807 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
| 808 |
+
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
|
| 809 |
+
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
|
| 810 |
+
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
|
| 811 |
+
if self.predict_x0:
|
| 812 |
+
x_t = (
|
| 813 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
| 814 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
| 815 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
|
| 816 |
+
- expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
|
| 817 |
+
)
|
| 818 |
+
else:
|
| 819 |
+
x_t = (
|
| 820 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
| 821 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
| 822 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
|
| 823 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
|
| 824 |
+
)
|
| 825 |
+
return x_t
|
| 826 |
+
|
| 827 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
|
| 828 |
+
r2=None):
|
| 829 |
+
"""
|
| 830 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
| 831 |
+
Args:
|
| 832 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 833 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
| 834 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 835 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
| 836 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
| 837 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 838 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 839 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
| 840 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
| 841 |
+
Returns:
|
| 842 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 843 |
+
"""
|
| 844 |
+
if order == 1:
|
| 845 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
| 846 |
+
elif order == 2:
|
| 847 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
|
| 848 |
+
solver_type=solver_type, r1=r1)
|
| 849 |
+
elif order == 3:
|
| 850 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
|
| 851 |
+
solver_type=solver_type, r1=r1, r2=r2)
|
| 852 |
+
else:
|
| 853 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
| 854 |
+
|
| 855 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
|
| 856 |
+
"""
|
| 857 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
| 858 |
+
Args:
|
| 859 |
+
x: A pytorch tensor. The initial value at time `s`.
|
| 860 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
| 861 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
| 862 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
| 863 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
| 864 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 865 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 866 |
+
Returns:
|
| 867 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
| 868 |
+
"""
|
| 869 |
+
if order == 1:
|
| 870 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
| 871 |
+
elif order == 2:
|
| 872 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
| 873 |
+
elif order == 3:
|
| 874 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
| 875 |
+
else:
|
| 876 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
| 877 |
+
|
| 878 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
|
| 879 |
+
solver_type='dpm_solver'):
|
| 880 |
+
"""
|
| 881 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
| 882 |
+
Args:
|
| 883 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
| 884 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
| 885 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
| 886 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
| 887 |
+
h_init: A `float`. The initial step size (for logSNR).
|
| 888 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
| 889 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
| 890 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
| 891 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
| 892 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
| 893 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
| 894 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
| 895 |
+
Returns:
|
| 896 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
| 897 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
| 898 |
+
"""
|
| 899 |
+
ns = self.noise_schedule
|
| 900 |
+
s = t_T * torch.ones((x.shape[0],)).to(x)
|
| 901 |
+
lambda_s = ns.marginal_lambda(s)
|
| 902 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
| 903 |
+
h = h_init * torch.ones_like(s).to(x)
|
| 904 |
+
x_prev = x
|
| 905 |
+
nfe = 0
|
| 906 |
+
if order == 2:
|
| 907 |
+
r1 = 0.5
|
| 908 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
| 909 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
| 910 |
+
solver_type=solver_type,
|
| 911 |
+
**kwargs)
|
| 912 |
+
elif order == 3:
|
| 913 |
+
r1, r2 = 1. / 3., 2. / 3.
|
| 914 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
|
| 915 |
+
return_intermediate=True,
|
| 916 |
+
solver_type=solver_type)
|
| 917 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
|
| 918 |
+
solver_type=solver_type,
|
| 919 |
+
**kwargs)
|
| 920 |
+
else:
|
| 921 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
| 922 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
| 923 |
+
t = ns.inverse_lambda(lambda_s + h)
|
| 924 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
| 925 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
| 926 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
| 927 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
| 928 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
| 929 |
+
if torch.all(E <= 1.):
|
| 930 |
+
x = x_higher
|
| 931 |
+
s = t
|
| 932 |
+
x_prev = x_lower
|
| 933 |
+
lambda_s = ns.marginal_lambda(s)
|
| 934 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
| 935 |
+
nfe += order
|
| 936 |
+
print('adaptive solver nfe', nfe)
|
| 937 |
+
return x
|
| 938 |
+
|
| 939 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
| 940 |
+
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
| 941 |
+
atol=0.0078, rtol=0.05,
|
| 942 |
+
):
|
| 943 |
+
"""
|
| 944 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
| 945 |
+
=====================================================
|
| 946 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
| 947 |
+
- 'singlestep':
|
| 948 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
| 949 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
| 950 |
+
The total number of function evaluations (NFE) == `steps`.
|
| 951 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
| 952 |
+
- If `order` == 1:
|
| 953 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
| 954 |
+
- If `order` == 2:
|
| 955 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
| 956 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
| 957 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 958 |
+
- If `order` == 3:
|
| 959 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
| 960 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
| 961 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
| 962 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
| 963 |
+
- 'multistep':
|
| 964 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
| 965 |
+
We initialize the first `order` values by lower order multistep solvers.
|
| 966 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
| 967 |
+
Denote K = steps.
|
| 968 |
+
- If `order` == 1:
|
| 969 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
| 970 |
+
- If `order` == 2:
|
| 971 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
| 972 |
+
- If `order` == 3:
|
| 973 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
| 974 |
+
- 'singlestep_fixed':
|
| 975 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
| 976 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
| 977 |
+
- 'adaptive':
|
| 978 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
| 979 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
| 980 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
| 981 |
+
(NFE) and the sample quality.
|
| 982 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
| 983 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
| 984 |
+
=====================================================
|
| 985 |
+
Some advices for choosing the algorithm:
|
| 986 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
| 987 |
+
Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
|
| 988 |
+
e.g.
|
| 989 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
|
| 990 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
| 991 |
+
skip_type='time_uniform', method='singlestep')
|
| 992 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
| 993 |
+
Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
|
| 994 |
+
e.g.
|
| 995 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
|
| 996 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
| 997 |
+
skip_type='time_uniform', method='multistep')
|
| 998 |
+
We support three types of `skip_type`:
|
| 999 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
| 1000 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
| 1001 |
+
- 'time_quadratic': quadratic time for the time steps.
|
| 1002 |
+
=====================================================
|
| 1003 |
+
Args:
|
| 1004 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
| 1005 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
| 1006 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
| 1007 |
+
t_start: A `float`. The starting time of the sampling.
|
| 1008 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
| 1009 |
+
t_end: A `float`. The ending time of the sampling.
|
| 1010 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
| 1011 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
| 1012 |
+
For discrete-time DPMs:
|
| 1013 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
| 1014 |
+
For continuous-time DPMs:
|
| 1015 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
| 1016 |
+
order: A `int`. The order of DPM-Solver.
|
| 1017 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
| 1018 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
| 1019 |
+
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
| 1020 |
+
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
| 1021 |
+
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
| 1022 |
+
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
| 1023 |
+
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
| 1024 |
+
(such as CIFAR-10). However, we observed that such trick does not matter for
|
| 1025 |
+
high-resolutional images. As it needs an additional NFE, we do not recommend
|
| 1026 |
+
it for high-resolutional images.
|
| 1027 |
+
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
| 1028 |
+
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
| 1029 |
+
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
| 1030 |
+
(especially for steps <= 10). So we recommend to set it to be `True`.
|
| 1031 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
|
| 1032 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
| 1033 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
| 1034 |
+
Returns:
|
| 1035 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
| 1036 |
+
"""
|
| 1037 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
| 1038 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
| 1039 |
+
device = x.device
|
| 1040 |
+
if method == 'adaptive':
|
| 1041 |
+
with torch.no_grad():
|
| 1042 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
|
| 1043 |
+
solver_type=solver_type)
|
| 1044 |
+
elif method == 'multistep':
|
| 1045 |
+
assert steps >= order
|
| 1046 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
| 1047 |
+
assert timesteps.shape[0] - 1 == steps
|
| 1048 |
+
with torch.no_grad():
|
| 1049 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
| 1050 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
| 1051 |
+
t_prev_list = [vec_t]
|
| 1052 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
| 1053 |
+
for init_order in tqdm(range(1, order), desc="DPM init order"):
|
| 1054 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
| 1055 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
|
| 1056 |
+
solver_type=solver_type)
|
| 1057 |
+
model_prev_list.append(self.model_fn(x, vec_t))
|
| 1058 |
+
t_prev_list.append(vec_t)
|
| 1059 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
| 1060 |
+
for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
|
| 1061 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
| 1062 |
+
if lower_order_final and steps < 15:
|
| 1063 |
+
step_order = min(order, steps + 1 - step)
|
| 1064 |
+
else:
|
| 1065 |
+
step_order = order
|
| 1066 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
|
| 1067 |
+
solver_type=solver_type)
|
| 1068 |
+
for i in range(order - 1):
|
| 1069 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
| 1070 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
| 1071 |
+
t_prev_list[-1] = vec_t
|
| 1072 |
+
# We do not need to evaluate the final model value.
|
| 1073 |
+
if step < steps:
|
| 1074 |
+
model_prev_list[-1] = self.model_fn(x, vec_t)
|
| 1075 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
| 1076 |
+
if method == 'singlestep':
|
| 1077 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
|
| 1078 |
+
skip_type=skip_type,
|
| 1079 |
+
t_T=t_T, t_0=t_0,
|
| 1080 |
+
device=device)
|
| 1081 |
+
elif method == 'singlestep_fixed':
|
| 1082 |
+
K = steps // order
|
| 1083 |
+
orders = [order, ] * K
|
| 1084 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
| 1085 |
+
for i, order in enumerate(orders):
|
| 1086 |
+
t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
|
| 1087 |
+
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
|
| 1088 |
+
N=order, device=device)
|
| 1089 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
| 1090 |
+
vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
|
| 1091 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
| 1092 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
| 1093 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
| 1094 |
+
x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
|
| 1095 |
+
if denoise_to_zero:
|
| 1096 |
+
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
| 1097 |
+
return x
|
| 1098 |
+
|
| 1099 |
+
|
| 1100 |
+
#############################################################
|
| 1101 |
+
# other utility functions
|
| 1102 |
+
#############################################################
|
| 1103 |
+
|
| 1104 |
+
def interpolate_fn(x, xp, yp):
|
| 1105 |
+
"""
|
| 1106 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
| 1107 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
| 1108 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
| 1109 |
+
Args:
|
| 1110 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
| 1111 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
| 1112 |
+
yp: PyTorch tensor with shape [C, K].
|
| 1113 |
+
Returns:
|
| 1114 |
+
The function values f(x), with shape [N, C].
|
| 1115 |
+
"""
|
| 1116 |
+
N, K = x.shape[0], xp.shape[1]
|
| 1117 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
| 1118 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
| 1119 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
| 1120 |
+
cand_start_idx = x_idx - 1
|
| 1121 |
+
start_idx = torch.where(
|
| 1122 |
+
torch.eq(x_idx, 0),
|
| 1123 |
+
torch.tensor(1, device=x.device),
|
| 1124 |
+
torch.where(
|
| 1125 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
| 1126 |
+
),
|
| 1127 |
+
)
|
| 1128 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
| 1129 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
| 1130 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
| 1131 |
+
start_idx2 = torch.where(
|
| 1132 |
+
torch.eq(x_idx, 0),
|
| 1133 |
+
torch.tensor(0, device=x.device),
|
| 1134 |
+
torch.where(
|
| 1135 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
| 1136 |
+
),
|
| 1137 |
+
)
|
| 1138 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
| 1139 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
| 1140 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
| 1141 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
| 1142 |
+
return cand
|
| 1143 |
+
|
| 1144 |
+
|
| 1145 |
+
def expand_dims(v, dims):
|
| 1146 |
+
"""
|
| 1147 |
+
Expand the tensor `v` to the dim `dims`.
|
| 1148 |
+
Args:
|
| 1149 |
+
`v`: a PyTorch tensor with shape [N].
|
| 1150 |
+
`dim`: a `int`.
|
| 1151 |
+
Returns:
|
| 1152 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
| 1153 |
+
"""
|
| 1154 |
+
return v[(...,) + (None,) * (dims - 1)]
|
ControlNet/ldm/models/diffusion/dpm_solver/sampler.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
MODEL_TYPES = {
|
| 8 |
+
"eps": "noise",
|
| 9 |
+
"v": "v"
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DPMSolverSampler(object):
|
| 14 |
+
def __init__(self, model, **kwargs):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.model = model
|
| 17 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
| 18 |
+
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
| 19 |
+
|
| 20 |
+
def register_buffer(self, name, attr):
|
| 21 |
+
if type(attr) == torch.Tensor:
|
| 22 |
+
if attr.device != torch.device("cuda"):
|
| 23 |
+
attr = attr.to(torch.device("cuda"))
|
| 24 |
+
setattr(self, name, attr)
|
| 25 |
+
|
| 26 |
+
@torch.no_grad()
|
| 27 |
+
def sample(self,
|
| 28 |
+
S,
|
| 29 |
+
batch_size,
|
| 30 |
+
shape,
|
| 31 |
+
conditioning=None,
|
| 32 |
+
callback=None,
|
| 33 |
+
normals_sequence=None,
|
| 34 |
+
img_callback=None,
|
| 35 |
+
quantize_x0=False,
|
| 36 |
+
eta=0.,
|
| 37 |
+
mask=None,
|
| 38 |
+
x0=None,
|
| 39 |
+
temperature=1.,
|
| 40 |
+
noise_dropout=0.,
|
| 41 |
+
score_corrector=None,
|
| 42 |
+
corrector_kwargs=None,
|
| 43 |
+
verbose=True,
|
| 44 |
+
x_T=None,
|
| 45 |
+
log_every_t=100,
|
| 46 |
+
unconditional_guidance_scale=1.,
|
| 47 |
+
unconditional_conditioning=None,
|
| 48 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 49 |
+
**kwargs
|
| 50 |
+
):
|
| 51 |
+
if conditioning is not None:
|
| 52 |
+
if isinstance(conditioning, dict):
|
| 53 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
| 54 |
+
if cbs != batch_size:
|
| 55 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 56 |
+
else:
|
| 57 |
+
if conditioning.shape[0] != batch_size:
|
| 58 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 59 |
+
|
| 60 |
+
# sampling
|
| 61 |
+
C, H, W = shape
|
| 62 |
+
size = (batch_size, C, H, W)
|
| 63 |
+
|
| 64 |
+
print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
|
| 65 |
+
|
| 66 |
+
device = self.model.betas.device
|
| 67 |
+
if x_T is None:
|
| 68 |
+
img = torch.randn(size, device=device)
|
| 69 |
+
else:
|
| 70 |
+
img = x_T
|
| 71 |
+
|
| 72 |
+
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
| 73 |
+
|
| 74 |
+
model_fn = model_wrapper(
|
| 75 |
+
lambda x, t, c: self.model.apply_model(x, t, c),
|
| 76 |
+
ns,
|
| 77 |
+
model_type=MODEL_TYPES[self.model.parameterization],
|
| 78 |
+
guidance_type="classifier-free",
|
| 79 |
+
condition=conditioning,
|
| 80 |
+
unconditional_condition=unconditional_conditioning,
|
| 81 |
+
guidance_scale=unconditional_guidance_scale,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
| 85 |
+
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
|
| 86 |
+
|
| 87 |
+
return x.to(device), None
|
ControlNet/ldm/models/diffusion/plms.py
ADDED
|
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""SAMPLING ONLY."""
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from functools import partial
|
| 7 |
+
|
| 8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
| 9 |
+
from ldm.models.diffusion.sampling_util import norm_thresholding
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class PLMSSampler(object):
|
| 13 |
+
def __init__(self, model, schedule="linear", **kwargs):
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.model = model
|
| 16 |
+
self.ddpm_num_timesteps = model.num_timesteps
|
| 17 |
+
self.schedule = schedule
|
| 18 |
+
|
| 19 |
+
def register_buffer(self, name, attr):
|
| 20 |
+
if type(attr) == torch.Tensor:
|
| 21 |
+
if attr.device != torch.device("cuda"):
|
| 22 |
+
attr = attr.to(torch.device("cuda"))
|
| 23 |
+
setattr(self, name, attr)
|
| 24 |
+
|
| 25 |
+
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
| 26 |
+
if ddim_eta != 0:
|
| 27 |
+
raise ValueError('ddim_eta must be 0 for PLMS')
|
| 28 |
+
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
| 29 |
+
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
| 30 |
+
alphas_cumprod = self.model.alphas_cumprod
|
| 31 |
+
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
| 32 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
| 33 |
+
|
| 34 |
+
self.register_buffer('betas', to_torch(self.model.betas))
|
| 35 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
| 36 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
| 37 |
+
|
| 38 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
| 39 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
| 40 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
| 41 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
| 42 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
| 43 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
| 44 |
+
|
| 45 |
+
# ddim sampling parameters
|
| 46 |
+
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
| 47 |
+
ddim_timesteps=self.ddim_timesteps,
|
| 48 |
+
eta=ddim_eta,verbose=verbose)
|
| 49 |
+
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
| 50 |
+
self.register_buffer('ddim_alphas', ddim_alphas)
|
| 51 |
+
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
| 52 |
+
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
| 53 |
+
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
| 54 |
+
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
| 55 |
+
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
| 56 |
+
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
| 57 |
+
|
| 58 |
+
@torch.no_grad()
|
| 59 |
+
def sample(self,
|
| 60 |
+
S,
|
| 61 |
+
batch_size,
|
| 62 |
+
shape,
|
| 63 |
+
conditioning=None,
|
| 64 |
+
callback=None,
|
| 65 |
+
normals_sequence=None,
|
| 66 |
+
img_callback=None,
|
| 67 |
+
quantize_x0=False,
|
| 68 |
+
eta=0.,
|
| 69 |
+
mask=None,
|
| 70 |
+
x0=None,
|
| 71 |
+
temperature=1.,
|
| 72 |
+
noise_dropout=0.,
|
| 73 |
+
score_corrector=None,
|
| 74 |
+
corrector_kwargs=None,
|
| 75 |
+
verbose=True,
|
| 76 |
+
x_T=None,
|
| 77 |
+
log_every_t=100,
|
| 78 |
+
unconditional_guidance_scale=1.,
|
| 79 |
+
unconditional_conditioning=None,
|
| 80 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
| 81 |
+
dynamic_threshold=None,
|
| 82 |
+
**kwargs
|
| 83 |
+
):
|
| 84 |
+
if conditioning is not None:
|
| 85 |
+
if isinstance(conditioning, dict):
|
| 86 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
| 87 |
+
if cbs != batch_size:
|
| 88 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
| 89 |
+
else:
|
| 90 |
+
if conditioning.shape[0] != batch_size:
|
| 91 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
| 92 |
+
|
| 93 |
+
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
| 94 |
+
# sampling
|
| 95 |
+
C, H, W = shape
|
| 96 |
+
size = (batch_size, C, H, W)
|
| 97 |
+
print(f'Data shape for PLMS sampling is {size}')
|
| 98 |
+
|
| 99 |
+
samples, intermediates = self.plms_sampling(conditioning, size,
|
| 100 |
+
callback=callback,
|
| 101 |
+
img_callback=img_callback,
|
| 102 |
+
quantize_denoised=quantize_x0,
|
| 103 |
+
mask=mask, x0=x0,
|
| 104 |
+
ddim_use_original_steps=False,
|
| 105 |
+
noise_dropout=noise_dropout,
|
| 106 |
+
temperature=temperature,
|
| 107 |
+
score_corrector=score_corrector,
|
| 108 |
+
corrector_kwargs=corrector_kwargs,
|
| 109 |
+
x_T=x_T,
|
| 110 |
+
log_every_t=log_every_t,
|
| 111 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 112 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 113 |
+
dynamic_threshold=dynamic_threshold,
|
| 114 |
+
)
|
| 115 |
+
return samples, intermediates
|
| 116 |
+
|
| 117 |
+
@torch.no_grad()
|
| 118 |
+
def plms_sampling(self, cond, shape,
|
| 119 |
+
x_T=None, ddim_use_original_steps=False,
|
| 120 |
+
callback=None, timesteps=None, quantize_denoised=False,
|
| 121 |
+
mask=None, x0=None, img_callback=None, log_every_t=100,
|
| 122 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 123 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
| 124 |
+
dynamic_threshold=None):
|
| 125 |
+
device = self.model.betas.device
|
| 126 |
+
b = shape[0]
|
| 127 |
+
if x_T is None:
|
| 128 |
+
img = torch.randn(shape, device=device)
|
| 129 |
+
else:
|
| 130 |
+
img = x_T
|
| 131 |
+
|
| 132 |
+
if timesteps is None:
|
| 133 |
+
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
| 134 |
+
elif timesteps is not None and not ddim_use_original_steps:
|
| 135 |
+
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
| 136 |
+
timesteps = self.ddim_timesteps[:subset_end]
|
| 137 |
+
|
| 138 |
+
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
| 139 |
+
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
| 140 |
+
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
| 141 |
+
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
| 142 |
+
|
| 143 |
+
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
| 144 |
+
old_eps = []
|
| 145 |
+
|
| 146 |
+
for i, step in enumerate(iterator):
|
| 147 |
+
index = total_steps - i - 1
|
| 148 |
+
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
| 149 |
+
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
| 150 |
+
|
| 151 |
+
if mask is not None:
|
| 152 |
+
assert x0 is not None
|
| 153 |
+
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
| 154 |
+
img = img_orig * mask + (1. - mask) * img
|
| 155 |
+
|
| 156 |
+
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
| 157 |
+
quantize_denoised=quantize_denoised, temperature=temperature,
|
| 158 |
+
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
| 159 |
+
corrector_kwargs=corrector_kwargs,
|
| 160 |
+
unconditional_guidance_scale=unconditional_guidance_scale,
|
| 161 |
+
unconditional_conditioning=unconditional_conditioning,
|
| 162 |
+
old_eps=old_eps, t_next=ts_next,
|
| 163 |
+
dynamic_threshold=dynamic_threshold)
|
| 164 |
+
img, pred_x0, e_t = outs
|
| 165 |
+
old_eps.append(e_t)
|
| 166 |
+
if len(old_eps) >= 4:
|
| 167 |
+
old_eps.pop(0)
|
| 168 |
+
if callback: callback(i)
|
| 169 |
+
if img_callback: img_callback(pred_x0, i)
|
| 170 |
+
|
| 171 |
+
if index % log_every_t == 0 or index == total_steps - 1:
|
| 172 |
+
intermediates['x_inter'].append(img)
|
| 173 |
+
intermediates['pred_x0'].append(pred_x0)
|
| 174 |
+
|
| 175 |
+
return img, intermediates
|
| 176 |
+
|
| 177 |
+
@torch.no_grad()
|
| 178 |
+
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
| 179 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
| 180 |
+
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
|
| 181 |
+
dynamic_threshold=None):
|
| 182 |
+
b, *_, device = *x.shape, x.device
|
| 183 |
+
|
| 184 |
+
def get_model_output(x, t):
|
| 185 |
+
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
| 186 |
+
e_t = self.model.apply_model(x, t, c)
|
| 187 |
+
else:
|
| 188 |
+
x_in = torch.cat([x] * 2)
|
| 189 |
+
t_in = torch.cat([t] * 2)
|
| 190 |
+
c_in = torch.cat([unconditional_conditioning, c])
|
| 191 |
+
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
| 192 |
+
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
| 193 |
+
|
| 194 |
+
if score_corrector is not None:
|
| 195 |
+
assert self.model.parameterization == "eps"
|
| 196 |
+
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
| 197 |
+
|
| 198 |
+
return e_t
|
| 199 |
+
|
| 200 |
+
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
| 201 |
+
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
| 202 |
+
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
| 203 |
+
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
| 204 |
+
|
| 205 |
+
def get_x_prev_and_pred_x0(e_t, index):
|
| 206 |
+
# select parameters corresponding to the currently considered timestep
|
| 207 |
+
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
| 208 |
+
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
| 209 |
+
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
| 210 |
+
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
| 211 |
+
|
| 212 |
+
# current prediction for x_0
|
| 213 |
+
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
| 214 |
+
if quantize_denoised:
|
| 215 |
+
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
| 216 |
+
if dynamic_threshold is not None:
|
| 217 |
+
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
| 218 |
+
# direction pointing to x_t
|
| 219 |
+
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
| 220 |
+
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
| 221 |
+
if noise_dropout > 0.:
|
| 222 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
| 223 |
+
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
| 224 |
+
return x_prev, pred_x0
|
| 225 |
+
|
| 226 |
+
e_t = get_model_output(x, t)
|
| 227 |
+
if len(old_eps) == 0:
|
| 228 |
+
# Pseudo Improved Euler (2nd order)
|
| 229 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
| 230 |
+
e_t_next = get_model_output(x_prev, t_next)
|
| 231 |
+
e_t_prime = (e_t + e_t_next) / 2
|
| 232 |
+
elif len(old_eps) == 1:
|
| 233 |
+
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
| 234 |
+
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
| 235 |
+
elif len(old_eps) == 2:
|
| 236 |
+
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
| 237 |
+
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
| 238 |
+
elif len(old_eps) >= 3:
|
| 239 |
+
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
| 240 |
+
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
| 241 |
+
|
| 242 |
+
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
| 243 |
+
|
| 244 |
+
return x_prev, pred_x0, e_t
|
ControlNet/ldm/models/diffusion/sampling_util.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def append_dims(x, target_dims):
|
| 6 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
| 7 |
+
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
| 8 |
+
dims_to_append = target_dims - x.ndim
|
| 9 |
+
if dims_to_append < 0:
|
| 10 |
+
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
| 11 |
+
return x[(...,) + (None,) * dims_to_append]
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def norm_thresholding(x0, value):
|
| 15 |
+
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
| 16 |
+
return x0 * (value / s)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def spatial_norm_thresholding(x0, value):
|
| 20 |
+
# b c h w
|
| 21 |
+
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
| 22 |
+
return x0 * (value / s)
|