Spaces:
Runtime error
Runtime error
Commit
Β·
0b20b6b
1
Parent(s):
7180fe0
Copy from camel repo
Browse files- app.py +6 -0
- apps/data_explorer/data_explorer.py +332 -0
- apps/data_explorer/downloader.py +42 -0
- apps/data_explorer/loader.py +172 -0
app.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from apps.data_explorer.data_explorer import main
|
| 2 |
+
from apps.data_explorer.downloader import download_data
|
| 3 |
+
|
| 4 |
+
if __name__ == "__main__":
|
| 5 |
+
download_data()
|
| 6 |
+
main()
|
apps/data_explorer/data_explorer.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio-based web UI to explore the Camel dataset.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
import random
|
| 7 |
+
from typing import Dict, List, Optional, Tuple
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
|
| 11 |
+
from apps.data_explorer.loader import Datasets, load_datasets
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def parse_arguments():
|
| 15 |
+
""" Get command line arguments. """
|
| 16 |
+
|
| 17 |
+
parser = argparse.ArgumentParser("Camel data explorer")
|
| 18 |
+
parser.add_argument(
|
| 19 |
+
'--data-path', type=str, default=None,
|
| 20 |
+
help='Path to the folder with ZIP datasets containing JSONs')
|
| 21 |
+
parser.add_argument('--default-dataset', type=str, default=None,
|
| 22 |
+
help='Default dataset name selected from ZIPs')
|
| 23 |
+
parser.add_argument('--share', type=bool, default=False,
|
| 24 |
+
help='Expose the web UI to Gradio')
|
| 25 |
+
parser.add_argument('--server-port', type=int, default=8080,
|
| 26 |
+
help='Port ot run the web page on')
|
| 27 |
+
parser.add_argument('--inbrowser', type=bool, default=False,
|
| 28 |
+
help='Open the web UI in the default browser on lunch')
|
| 29 |
+
parser.add_argument(
|
| 30 |
+
'--concurrency-count', type=int, default=10,
|
| 31 |
+
help='Number if concurrent threads at Gradio websocket queue. ' +
|
| 32 |
+
'Increase to serve more requests but keep an eye on RAM usage.')
|
| 33 |
+
args, unknown = parser.parse_known_args()
|
| 34 |
+
if len(unknown) > 0:
|
| 35 |
+
print("Unknown args: ", unknown)
|
| 36 |
+
return args
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def construct_ui(blocks, datasets: Datasets, default_dataset: str = None):
|
| 40 |
+
""" Build Gradio UI and populate with chat data from JSONs.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
blocks: Gradio blocks
|
| 44 |
+
datasets (Datasets): Several parsed
|
| 45 |
+
multi-JSON dataset with chats.
|
| 46 |
+
default_dataset (str): Default selection of the dataset.
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
None
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
if default_dataset is None:
|
| 53 |
+
default_dataset = "ai_society_chat"
|
| 54 |
+
|
| 55 |
+
misalignment_set_names = {"misalignment"}
|
| 56 |
+
ordinary_datasets = [
|
| 57 |
+
v for v in datasets.keys() if v not in misalignment_set_names
|
| 58 |
+
]
|
| 59 |
+
misalignment_datasets = [
|
| 60 |
+
v for v in datasets.keys() if v in misalignment_set_names
|
| 61 |
+
]
|
| 62 |
+
default_dataset_name = default_dataset \
|
| 63 |
+
if default_dataset in datasets.keys() \
|
| 64 |
+
else ordinary_datasets[0] if len(ordinary_datasets) > 0 \
|
| 65 |
+
else misalignment_datasets[0] if len(misalignment_datasets) > 0 \
|
| 66 |
+
else ""
|
| 67 |
+
dataset_names = list(datasets.keys())
|
| 68 |
+
|
| 69 |
+
with gr.Row().style():
|
| 70 |
+
with gr.Column(scale=2):
|
| 71 |
+
with gr.Row():
|
| 72 |
+
dataset_dd = gr.Dropdown(dataset_names, label="Select dataset",
|
| 73 |
+
value="NODEFAULT", interactive=True)
|
| 74 |
+
with gr.Row():
|
| 75 |
+
disclaimer_ta = gr.Markdown(
|
| 76 |
+
"## By clicking AGREE I consent to use the dataset "
|
| 77 |
+
"for purely educational and academic purposes and "
|
| 78 |
+
"not use it for any fraudulent activity; and I take "
|
| 79 |
+
"all the responsibility if the data is used in a "
|
| 80 |
+
"malicious application.", visible=False)
|
| 81 |
+
with gr.Row():
|
| 82 |
+
with gr.Column(scale=1):
|
| 83 |
+
accept_disclaimer_bn = gr.Button("AGREE", visible=False)
|
| 84 |
+
with gr.Column(scale=1):
|
| 85 |
+
decline_disclaimer_bn = gr.Button("DECLINE", visible=False)
|
| 86 |
+
with gr.Row():
|
| 87 |
+
with gr.Column(scale=3):
|
| 88 |
+
assistant_dd = gr.Dropdown([], label="ASSISTANT", value="",
|
| 89 |
+
interactive=True)
|
| 90 |
+
with gr.Column(scale=3):
|
| 91 |
+
user_dd = gr.Dropdown([], label="USER", value="",
|
| 92 |
+
interactive=True)
|
| 93 |
+
with gr.Column(scale=1):
|
| 94 |
+
gr.Markdown(
|
| 95 |
+
"## CAMEL: Communicative Agents for \"Mind\" Exploration"
|
| 96 |
+
" of Large Scale Language Model Society\n"
|
| 97 |
+
"Github repo: [https://github.com/lightaime/camel]"
|
| 98 |
+
"(https://github.com/lightaime/camel)\n"
|
| 99 |
+
'<div style="display:flex; justify-content:center;">'
|
| 100 |
+
'<img src="https://raw.githubusercontent.com/lightaime/camel/'
|
| 101 |
+
'master/misc/logo.png" alt="Logo" style="max-width:50%;">'
|
| 102 |
+
'</div>')
|
| 103 |
+
|
| 104 |
+
task_dd = gr.Dropdown([], label="Original task", value="",
|
| 105 |
+
interactive=True)
|
| 106 |
+
specified_task_ta = gr.TextArea(label="Specified task", lines=2)
|
| 107 |
+
chatbot = gr.Chatbot()
|
| 108 |
+
accepted_st = gr.State(False)
|
| 109 |
+
|
| 110 |
+
def set_default_dataset() -> Dict:
|
| 111 |
+
""" Trigger for app load.
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
Dict: Update dict for dataset_dd.
|
| 115 |
+
"""
|
| 116 |
+
return gr.update(value=default_dataset_name)
|
| 117 |
+
|
| 118 |
+
def check_if_misalignment(dataset_name: str, accepted: bool) \
|
| 119 |
+
-> Tuple[Dict, Dict, Dict]:
|
| 120 |
+
""" Display AGREE/DECLINE if needed.
|
| 121 |
+
|
| 122 |
+
Returns:
|
| 123 |
+
Tuple: Visibility updates for the buttons.
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
if dataset_name == "misalignment" and not accepted:
|
| 127 |
+
return gr.update(visible=True), \
|
| 128 |
+
gr.update(visible=True), gr.update(visible=True)
|
| 129 |
+
else:
|
| 130 |
+
return gr.update(visible=False), \
|
| 131 |
+
gr.update(visible=False), gr.update(visible=False)
|
| 132 |
+
|
| 133 |
+
def enable_misalignment() -> Tuple[bool, Dict, Dict, Dict]:
|
| 134 |
+
""" Update the state of the accepted disclaimer.
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
Tuple: New state and visibility updates for the buttons.
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
return True, gr.update(visible=False), \
|
| 141 |
+
gr.update(visible=False), gr.update(visible=False)
|
| 142 |
+
|
| 143 |
+
def disable_misalignment() -> Tuple[bool, Dict, Dict, Dict]:
|
| 144 |
+
""" Update the state of the accepted disclaimer.
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
Tuple: New state and visibility updates for the buttons.
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
return False, gr.update(visible=False), \
|
| 151 |
+
gr.update(visible=False), gr.update(visible=False)
|
| 152 |
+
|
| 153 |
+
def update_dataset_selection(dataset_name: str,
|
| 154 |
+
accepted: bool) -> Tuple[Dict, Dict]:
|
| 155 |
+
""" Update roles based on the selected dataset.
|
| 156 |
+
|
| 157 |
+
Args:
|
| 158 |
+
dataset_name (str): Name of the loaded .zip dataset.
|
| 159 |
+
accepted (bool): If the disclaimer thas been accepted.
|
| 160 |
+
|
| 161 |
+
Returns:
|
| 162 |
+
Tuple[Dict, Dict]: New Assistant and User roles.
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
if dataset_name == "misalignment" and not accepted:
|
| 166 |
+
# If used did not accept the misalignment policy,
|
| 167 |
+
# keep the old selection.
|
| 168 |
+
return (gr.update(value="N/A",
|
| 169 |
+
choices=[]), gr.update(value="N/A", choices=[]))
|
| 170 |
+
|
| 171 |
+
dataset = datasets[dataset_name]
|
| 172 |
+
assistant_roles = dataset['assistant_roles']
|
| 173 |
+
user_roles = dataset['user_roles']
|
| 174 |
+
assistant_role = random.choice(assistant_roles) \
|
| 175 |
+
if len(assistant_roles) > 0 else ""
|
| 176 |
+
user_role = random.choice(user_roles) if len(user_roles) > 0 else ""
|
| 177 |
+
return (gr.update(value=assistant_role, choices=assistant_roles),
|
| 178 |
+
gr.update(value=user_role, choices=user_roles))
|
| 179 |
+
|
| 180 |
+
def roles_dd_change(dataset_name: str, assistant_role: str,
|
| 181 |
+
user_role: str) -> Dict:
|
| 182 |
+
""" Update the displayed chat upon inputs change.
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
assistant_role (str): Assistant dropdown value.
|
| 186 |
+
user_role (str): User dropdown value.
|
| 187 |
+
|
| 188 |
+
Returns:
|
| 189 |
+
Dict: New original roles state dictionary.
|
| 190 |
+
"""
|
| 191 |
+
matrix = datasets[dataset_name]['matrix']
|
| 192 |
+
if (assistant_role, user_role) in matrix:
|
| 193 |
+
record: Dict[str, Dict] = matrix[(assistant_role, user_role)]
|
| 194 |
+
original_task_options = list(record.keys())
|
| 195 |
+
original_task = original_task_options[0]
|
| 196 |
+
else:
|
| 197 |
+
original_task = "N/A"
|
| 198 |
+
original_task_options = []
|
| 199 |
+
|
| 200 |
+
choices = gr.Dropdown.update(choices=original_task_options,
|
| 201 |
+
value=original_task, interactive=True)
|
| 202 |
+
return choices
|
| 203 |
+
|
| 204 |
+
def build_chat_history(messages: Dict[int, Dict]) -> List[Tuple]:
|
| 205 |
+
""" Structures chatbot contents from the loaded data.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
messages (Dict[int, Dict]): Messages loaded from JSON.
|
| 209 |
+
|
| 210 |
+
Returns:
|
| 211 |
+
List[Tuple]: Chat history in chatbot UI element format.
|
| 212 |
+
"""
|
| 213 |
+
history = []
|
| 214 |
+
curr_qa = (None, None)
|
| 215 |
+
for k in sorted(messages.keys()):
|
| 216 |
+
msg = messages[k]
|
| 217 |
+
content = msg['content']
|
| 218 |
+
if msg['role_type'] == "USER":
|
| 219 |
+
if curr_qa[0] is not None:
|
| 220 |
+
history.append(curr_qa)
|
| 221 |
+
curr_qa = (content, None)
|
| 222 |
+
else:
|
| 223 |
+
curr_qa = (content, None)
|
| 224 |
+
elif msg['role_type'] == "ASSISTANT":
|
| 225 |
+
curr_qa = (curr_qa[0], content)
|
| 226 |
+
history.append(curr_qa)
|
| 227 |
+
curr_qa = (None, None)
|
| 228 |
+
else:
|
| 229 |
+
pass
|
| 230 |
+
return history
|
| 231 |
+
|
| 232 |
+
def task_dd_change(dataset_name: str, assistant_role: str, user_role: str,
|
| 233 |
+
original_task: str) -> Tuple[str, List]:
|
| 234 |
+
""" Load task details and chatbot history into UI elements.
|
| 235 |
+
|
| 236 |
+
Args:
|
| 237 |
+
assistant_role (str): An assistan role.
|
| 238 |
+
user_role (str): An user role.
|
| 239 |
+
original_task (str): The original task.
|
| 240 |
+
|
| 241 |
+
Returns:
|
| 242 |
+
Tuple[str, List]: New contents of the specified task
|
| 243 |
+
and chatbot history UI elements.
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
matrix = datasets[dataset_name]['matrix']
|
| 247 |
+
if (assistant_role, user_role) in matrix:
|
| 248 |
+
task_dict: Dict[str, Dict] = matrix[(assistant_role, user_role)]
|
| 249 |
+
if original_task in task_dict:
|
| 250 |
+
chat = task_dict[original_task]
|
| 251 |
+
specified_task = chat['specified_task']
|
| 252 |
+
history = build_chat_history(chat['messages'])
|
| 253 |
+
else:
|
| 254 |
+
specified_task = "N/A"
|
| 255 |
+
history = []
|
| 256 |
+
else:
|
| 257 |
+
specified_task = "N/A"
|
| 258 |
+
history = []
|
| 259 |
+
return specified_task, history
|
| 260 |
+
|
| 261 |
+
dataset_dd.change(check_if_misalignment, [dataset_dd, accepted_st],
|
| 262 |
+
[disclaimer_ta, accept_disclaimer_bn,
|
| 263 |
+
decline_disclaimer_bn]) \
|
| 264 |
+
.then(update_dataset_selection,
|
| 265 |
+
[dataset_dd, accepted_st],
|
| 266 |
+
[assistant_dd, user_dd])
|
| 267 |
+
|
| 268 |
+
accept_disclaimer_bn.click(enable_misalignment, None, [
|
| 269 |
+
accepted_st, disclaimer_ta, accept_disclaimer_bn, decline_disclaimer_bn
|
| 270 |
+
]) \
|
| 271 |
+
.then(update_dataset_selection,
|
| 272 |
+
[dataset_dd, accepted_st],
|
| 273 |
+
[assistant_dd, user_dd])
|
| 274 |
+
|
| 275 |
+
decline_disclaimer_bn.click(disable_misalignment, None, [
|
| 276 |
+
accepted_st, disclaimer_ta, accept_disclaimer_bn, decline_disclaimer_bn
|
| 277 |
+
]) \
|
| 278 |
+
.then(update_dataset_selection,
|
| 279 |
+
[dataset_dd, accepted_st],
|
| 280 |
+
[assistant_dd, user_dd])
|
| 281 |
+
|
| 282 |
+
func_args = (roles_dd_change, [dataset_dd, assistant_dd, user_dd], task_dd)
|
| 283 |
+
assistant_dd.change(*func_args)
|
| 284 |
+
user_dd.change(*func_args)
|
| 285 |
+
|
| 286 |
+
task_dd.change(task_dd_change,
|
| 287 |
+
[dataset_dd, assistant_dd, user_dd, task_dd],
|
| 288 |
+
[specified_task_ta, chatbot])
|
| 289 |
+
|
| 290 |
+
blocks.load(set_default_dataset, None, dataset_dd)
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def construct_blocks(data_path: str, default_dataset: Optional[str]):
|
| 294 |
+
""" Construct Blocs app but do not launch it.
|
| 295 |
+
|
| 296 |
+
Args:
|
| 297 |
+
data_path (str): Path to the set of ZIP datasets.
|
| 298 |
+
default_dataset (Optional[str]): Name of the default dataset,
|
| 299 |
+
without extension.
|
| 300 |
+
|
| 301 |
+
Returns:
|
| 302 |
+
gr.Blocks: Blocks instance.
|
| 303 |
+
"""
|
| 304 |
+
|
| 305 |
+
print("Loading the dataset...")
|
| 306 |
+
datasets = load_datasets(data_path)
|
| 307 |
+
print("Dataset is loaded")
|
| 308 |
+
|
| 309 |
+
print("Getting Data Explorer web server online...")
|
| 310 |
+
|
| 311 |
+
with gr.Blocks() as blocks:
|
| 312 |
+
construct_ui(blocks, datasets, default_dataset)
|
| 313 |
+
|
| 314 |
+
return blocks
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def main():
|
| 318 |
+
""" Entry point. """
|
| 319 |
+
|
| 320 |
+
args = parse_arguments()
|
| 321 |
+
|
| 322 |
+
blocks = construct_blocks(args.data_path, args.default_dataset)
|
| 323 |
+
|
| 324 |
+
blocks.queue(args.concurrency_count) \
|
| 325 |
+
.launch(share=args.share, inbrowser=args.inbrowser,
|
| 326 |
+
server_name="0.0.0.0", server_port=args.server_port)
|
| 327 |
+
|
| 328 |
+
print("Exiting.")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
if __name__ == "__main__":
|
| 332 |
+
main()
|
apps/data_explorer/downloader.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import urllib.request
|
| 3 |
+
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
|
| 6 |
+
REPO_ROOT = os.path.realpath(
|
| 7 |
+
os.path.join(os.path.dirname(os.path.abspath(__file__)), "../.."))
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def download_data():
|
| 11 |
+
|
| 12 |
+
print("Downloading...")
|
| 13 |
+
|
| 14 |
+
data_dir = os.path.join(REPO_ROOT, "datasets/")
|
| 15 |
+
|
| 16 |
+
os.makedirs(data_dir, exist_ok=True)
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
hf_hub_download(repo_id="camel-ai/ai_society", repo_type="dataset",
|
| 20 |
+
filename="ai_society_chat.zip", local_dir=data_dir,
|
| 21 |
+
local_dir_use_symlinks=False)
|
| 22 |
+
|
| 23 |
+
hf_hub_download(repo_id="camel-ai/code", repo_type="dataset",
|
| 24 |
+
filename="code_chat.zip", local_dir=data_dir,
|
| 25 |
+
local_dir_use_symlinks=False)
|
| 26 |
+
except:
|
| 27 |
+
for name in ("ai_society_chat.zip", "code_chat.zip"):
|
| 28 |
+
data_url = ("https://storage.googleapis.com/"
|
| 29 |
+
f"camel-bucket/datasets/private/{name}")
|
| 30 |
+
file_path = os.path.join(data_dir, os.path.split(data_url)[1])
|
| 31 |
+
urllib.request.urlretrieve(data_url, file_path)
|
| 32 |
+
|
| 33 |
+
data_url = ("https://storage.googleapis.com/"
|
| 34 |
+
"camel-bucket/datasets/private/misalignment.zip")
|
| 35 |
+
file_path = os.path.join(data_dir, os.path.split(data_url)[1])
|
| 36 |
+
urllib.request.urlretrieve(data_url, file_path)
|
| 37 |
+
|
| 38 |
+
print("Download done")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
if __name__ == "__main__":
|
| 42 |
+
download_data()
|
apps/data_explorer/loader.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Everything related to parsing the data JSONs into UI-compatible format.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import glob
|
| 6 |
+
import json
|
| 7 |
+
import os
|
| 8 |
+
import re
|
| 9 |
+
import zipfile
|
| 10 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 11 |
+
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
|
| 14 |
+
ChatHistory = Dict[str, Any]
|
| 15 |
+
ParsedChatHistory = Dict[str, Any]
|
| 16 |
+
AllChats = Dict[str, Any]
|
| 17 |
+
Datasets = Dict[str, AllChats]
|
| 18 |
+
|
| 19 |
+
REPO_ROOT = os.path.realpath(
|
| 20 |
+
os.path.join(os.path.dirname(os.path.abspath(__file__)), "../.."))
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class AutoZip:
|
| 24 |
+
def __init__(self, zip_path: str, ext: str = ".json"):
|
| 25 |
+
self.zip_path = zip_path
|
| 26 |
+
self.zip = zipfile.ZipFile(zip_path, "r")
|
| 27 |
+
self.fl = [f for f in self.zip.filelist if f.filename.endswith(ext)]
|
| 28 |
+
|
| 29 |
+
def __next__(self):
|
| 30 |
+
if self.index >= len(self.fl):
|
| 31 |
+
raise StopIteration
|
| 32 |
+
else:
|
| 33 |
+
finfo = self.fl[self.index]
|
| 34 |
+
with self.zip.open(finfo) as f:
|
| 35 |
+
raw_json = json.loads(f.read().decode("utf-8"))
|
| 36 |
+
self.index += 1
|
| 37 |
+
return raw_json
|
| 38 |
+
|
| 39 |
+
def __len__(self):
|
| 40 |
+
return len(self.fl)
|
| 41 |
+
|
| 42 |
+
def __iter__(self):
|
| 43 |
+
self.index = 0
|
| 44 |
+
return self
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def parse(raw_chat: ChatHistory) -> Union[ParsedChatHistory, None]:
|
| 48 |
+
""" Gets the JSON raw chat data, validates it and transforms
|
| 49 |
+
into an easy to work with form.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
raw_chat (ChatHistory): In-memory loaded JSON data file.
|
| 53 |
+
|
| 54 |
+
Returns:
|
| 55 |
+
Union[ParsedChatHistory, None]: Parsed chat data or None
|
| 56 |
+
if there were parsing errors.
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
if "role_1" not in raw_chat:
|
| 60 |
+
return None
|
| 61 |
+
|
| 62 |
+
role_1 = raw_chat["role_1"]
|
| 63 |
+
if "_RoleType.ASSISTANT" not in role_1:
|
| 64 |
+
return None
|
| 65 |
+
assistant_role = role_1.split("_RoleType.ASSISTANT")
|
| 66 |
+
if len(assistant_role) < 1:
|
| 67 |
+
return None
|
| 68 |
+
if len(assistant_role[0]) <= 0:
|
| 69 |
+
return None
|
| 70 |
+
assistant_role = assistant_role[0]
|
| 71 |
+
|
| 72 |
+
role_2 = raw_chat["role_2"]
|
| 73 |
+
if "_RoleType.USER" not in role_2:
|
| 74 |
+
return None
|
| 75 |
+
user_role = role_2.split("_RoleType.USER")
|
| 76 |
+
if len(user_role) < 1:
|
| 77 |
+
return None
|
| 78 |
+
if len(user_role[0]) <= 0:
|
| 79 |
+
return None
|
| 80 |
+
user_role = user_role[0]
|
| 81 |
+
|
| 82 |
+
original_task = raw_chat["original_task"]
|
| 83 |
+
if len(original_task) <= 0:
|
| 84 |
+
return None
|
| 85 |
+
|
| 86 |
+
specified_task = raw_chat["specified_task"]
|
| 87 |
+
if len(specified_task) <= 0:
|
| 88 |
+
return None
|
| 89 |
+
|
| 90 |
+
messages = dict()
|
| 91 |
+
for key in raw_chat:
|
| 92 |
+
match = re.search("message_(?P<number>[0-9]+)", key)
|
| 93 |
+
if match:
|
| 94 |
+
number = int(match.group("number"))
|
| 95 |
+
messages[number] = raw_chat[key]
|
| 96 |
+
|
| 97 |
+
return dict(
|
| 98 |
+
assistant_role=assistant_role,
|
| 99 |
+
user_role=user_role,
|
| 100 |
+
original_task=original_task,
|
| 101 |
+
specified_task=specified_task,
|
| 102 |
+
messages=messages,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def load_zip(zip_path: str) -> AllChats:
|
| 107 |
+
""" Load all JSONs from a zip file and parse them.
|
| 108 |
+
|
| 109 |
+
Args:
|
| 110 |
+
path (str): path to the ZIP file.
|
| 111 |
+
|
| 112 |
+
Returns:
|
| 113 |
+
AllChats: A dictionary with all possible assistant and
|
| 114 |
+
user roles and the matrix of chats.
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
zip_inst = AutoZip(zip_path)
|
| 118 |
+
parsed_list = []
|
| 119 |
+
for raw_chat in tqdm(iter(zip_inst)):
|
| 120 |
+
parsed = parse(raw_chat)
|
| 121 |
+
if parsed is None:
|
| 122 |
+
continue
|
| 123 |
+
parsed_list.append(parsed)
|
| 124 |
+
|
| 125 |
+
assistant_roles = set()
|
| 126 |
+
user_roles = set()
|
| 127 |
+
for parsed in parsed_list:
|
| 128 |
+
assistant_roles.add(parsed['assistant_role'])
|
| 129 |
+
user_roles.add(parsed['user_role'])
|
| 130 |
+
assistant_roles = list(sorted(assistant_roles))
|
| 131 |
+
user_roles = list(sorted(user_roles))
|
| 132 |
+
matrix: Dict[Tuple[str, str], List[Dict]] = dict()
|
| 133 |
+
for parsed in parsed_list:
|
| 134 |
+
key = (parsed['assistant_role'], parsed['user_role'])
|
| 135 |
+
original_task = parsed['original_task']
|
| 136 |
+
new_item = {
|
| 137 |
+
k: v
|
| 138 |
+
for k, v in parsed.items()
|
| 139 |
+
if k not in {'assistant_role', 'user_role', 'original_task'}
|
| 140 |
+
}
|
| 141 |
+
if key in matrix:
|
| 142 |
+
matrix[key][original_task] = new_item
|
| 143 |
+
else:
|
| 144 |
+
matrix[key] = {original_task: new_item}
|
| 145 |
+
|
| 146 |
+
return dict(
|
| 147 |
+
assistant_roles=assistant_roles,
|
| 148 |
+
user_roles=user_roles,
|
| 149 |
+
matrix=matrix,
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def load_datasets(path: Optional[str] = None) -> Datasets:
|
| 154 |
+
""" Load all JSONs from a set of zip files and parse them.
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
path (str): path to the folder with ZIP datasets.
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
Datasets: A dictionary of dataset name and dataset contents.
|
| 161 |
+
"""
|
| 162 |
+
|
| 163 |
+
if path is None:
|
| 164 |
+
path = os.path.join(REPO_ROOT, "datasets")
|
| 165 |
+
|
| 166 |
+
filt = os.path.join(path, "*.zip")
|
| 167 |
+
files = glob.glob(filt)
|
| 168 |
+
datasets = {}
|
| 169 |
+
for file_name in tqdm(files):
|
| 170 |
+
name = os.path.splitext(os.path.basename(file_name))[0]
|
| 171 |
+
datasets[name] = load_zip(file_name)
|
| 172 |
+
return datasets
|