File size: 7,611 Bytes
6b5de5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import torch
import torch.nn as nn
from .lsnet import LSNet, Conv2d_BN, BN_Linear
from timm.models import register_model
from timm.models import build_model_with_cfg
class LSNetArtist(LSNet):
def __init__(self,
img_size=224,
patch_size=8,
in_chans=3,
num_classes=1000,
embed_dim=[64, 128, 256, 384],
key_dim=[16, 16, 16, 16],
depth=[0, 2, 8, 10],
num_heads=[3, 3, 3, 4],
distillation=False,
feature_dim=None, # 特征向量维度,默认为embed_dim[-1]
use_projection=True, # 是否使用projection层
**kwargs):
default_cfg = kwargs.pop('default_cfg', None)
pretrained_cfg = kwargs.pop('pretrained_cfg', None)
pretrained_cfg_overlay = kwargs.pop('pretrained_cfg_overlay', None)
super().__init__(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
num_classes=num_classes,
embed_dim=embed_dim,
key_dim=key_dim,
depth=depth,
num_heads=num_heads,
distillation=distillation,
default_cfg=default_cfg,
pretrained_cfg=pretrained_cfg,
pretrained_cfg_overlay=pretrained_cfg_overlay,
**kwargs
)
self.feature_dim = feature_dim if feature_dim is not None else embed_dim[-1]
self.use_projection = use_projection
# 如果使用projection层,添加一个映射层来生成固定维度的特征
if self.use_projection and self.feature_dim != embed_dim[-1]:
self.projection = nn.Sequential(
BN_Linear(embed_dim[-1], self.feature_dim),
nn.ReLU(),
)
else:
self.projection = nn.Identity()
# 重新定义分类头(基于特征维度)
if num_classes > 0:
self.head = BN_Linear(self.feature_dim, num_classes)
if distillation:
self.head_dist = BN_Linear(self.feature_dim, num_classes)
def forward_features(self, x):
"""
提取特征,不经过分类头
用于聚类或特征提取
"""
x = self.patch_embed(x)
x = self.blocks1(x)
x = self.blocks2(x)
x = self.blocks3(x)
x = self.blocks4(x)
x = torch.nn.functional.adaptive_avg_pool2d(x, 1).flatten(1)
x = self.projection(x)
return x
def forward(self, x, return_features=False):
"""
x: 输入图像
return_features: 是否只返回特征向量(用于聚类)
False时返回分类logits(用于分类)
如果return_features=True: 返回特征向量 (batch_size, feature_dim)
如果return_features=False: 返回分类logits (batch_size, num_classes)
"""
features = self.forward_features(x)
if return_features:
# 返回特征向量用于聚类
return features
# 返回分类结果
if self.distillation:
x = self.head(features), self.head_dist(features)
if not self.training:
x = (x[0] + x[1]) / 2
else:
x = self.head(features)
return x
def get_features(self, x):
"""
提取特征向量
"""
return self.forward(x, return_features=True)
def classify(self, x):
"""
进行分类
"""
return self.forward(x, return_features=False)
def _cfg_artist(url='', **kwargs):
return {
'url': url,
'num_classes': 1000,
'input_size': (3, 224, 224),
'pool_size': (4, 4),
'crop_pct': .9,
'interpolation': 'bicubic',
'mean': (0.485, 0.456, 0.406),
'std': (0.229, 0.224, 0.225),
'first_conv': 'patch_embed.0.c',
'classifier': ('head.linear', 'head_dist.linear'),
**kwargs
}
default_cfgs_artist = dict(
lsnet_t_artist = _cfg_artist(),
lsnet_s_artist = _cfg_artist(),
lsnet_b_artist = _cfg_artist(),
lsnet_l_artist = _cfg_artist(),
lsnet_xl_artist = _cfg_artist(),
)
def _create_lsnet_artist(variant, pretrained=False, **kwargs):
cfg = default_cfgs_artist.get(variant, None)
if cfg is not None:
kwargs.setdefault('default_cfg', cfg)
kwargs.setdefault('pretrained_cfg', cfg)
model = build_model_with_cfg(
LSNetArtist,
variant,
pretrained,
**kwargs,
)
return model
@register_model
def lsnet_t_artist(num_classes=1000, distillation=False, pretrained=False,
feature_dim=None, use_projection=True, **kwargs):
model = _create_lsnet_artist(
"lsnet_t_artist",
pretrained=pretrained,
num_classes=num_classes,
distillation=distillation,
img_size=224,
patch_size=8,
embed_dim=[64, 128, 256, 384],
depth=[0, 2, 8, 10],
num_heads=[3, 3, 3, 4],
feature_dim=feature_dim,
use_projection=use_projection,
**kwargs
)
return model
@register_model
def lsnet_s_artist(num_classes=1000, distillation=False, pretrained=False,
feature_dim=None, use_projection=True, **kwargs):
model = _create_lsnet_artist(
"lsnet_s_artist",
pretrained=pretrained,
num_classes=num_classes,
distillation=distillation,
img_size=224,
patch_size=8,
embed_dim=[96, 192, 320, 448],
depth=[1, 2, 8, 10],
num_heads=[3, 3, 3, 4],
feature_dim=feature_dim,
use_projection=use_projection,
**kwargs
)
return model
@register_model
def lsnet_b_artist(num_classes=1000, distillation=False, pretrained=False,
feature_dim=None, use_projection=True, **kwargs):
model = _create_lsnet_artist(
"lsnet_b_artist",
pretrained=pretrained,
num_classes=num_classes,
distillation=distillation,
img_size=224,
patch_size=8,
embed_dim=[128, 256, 384, 512],
depth=[4, 6, 8, 10],
num_heads=[3, 3, 3, 4],
feature_dim=feature_dim,
use_projection=use_projection,
**kwargs
)
return model
@register_model
def lsnet_l_artist(num_classes=1000, distillation=False, pretrained=False,
feature_dim=None, use_projection=True, **kwargs):
model = _create_lsnet_artist(
"lsnet_l_artist",
pretrained=pretrained,
num_classes=num_classes,
distillation=distillation,
img_size=224,
patch_size=8,
embed_dim=[160, 320, 480, 640],
depth=[6, 8, 12, 14],
num_heads=[4, 4, 4, 4],
feature_dim=feature_dim,
use_projection=use_projection,
**kwargs
)
return model
@register_model
def lsnet_xl_artist(num_classes=1000, distillation=False, pretrained=False,
feature_dim=None, use_projection=True, **kwargs):
model = _create_lsnet_artist(
"lsnet_xl_artist",
pretrained=pretrained,
num_classes=num_classes,
distillation=distillation,
img_size=224,
patch_size=8,
embed_dim=[192, 384, 576, 768],
depth=[8, 12, 16, 20],
num_heads=[6, 6, 6, 6],
feature_dim=feature_dim,
use_projection=use_projection,
**kwargs
)
return model
|