File size: 7,611 Bytes
6b5de5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch
import torch.nn as nn
from .lsnet import LSNet, Conv2d_BN, BN_Linear
from timm.models import register_model
from timm.models import build_model_with_cfg


class LSNetArtist(LSNet):
    def __init__(self, 
                 img_size=224,
                 patch_size=8,
                 in_chans=3,
                 num_classes=1000,
                 embed_dim=[64, 128, 256, 384],
                 key_dim=[16, 16, 16, 16],
                 depth=[0, 2, 8, 10],
                 num_heads=[3, 3, 3, 4],
                 distillation=False,
                 feature_dim=None,  # 特征向量维度,默认为embed_dim[-1]
                 use_projection=True,  # 是否使用projection层
                 **kwargs):
        default_cfg = kwargs.pop('default_cfg', None)
        pretrained_cfg = kwargs.pop('pretrained_cfg', None)
        pretrained_cfg_overlay = kwargs.pop('pretrained_cfg_overlay', None)

        super().__init__(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            num_classes=num_classes,
            embed_dim=embed_dim,
            key_dim=key_dim,
            depth=depth,
            num_heads=num_heads,
            distillation=distillation,
            default_cfg=default_cfg,
            pretrained_cfg=pretrained_cfg,
            pretrained_cfg_overlay=pretrained_cfg_overlay,
            **kwargs
        )
        
        self.feature_dim = feature_dim if feature_dim is not None else embed_dim[-1]
        self.use_projection = use_projection
        
        # 如果使用projection层,添加一个映射层来生成固定维度的特征
        if self.use_projection and self.feature_dim != embed_dim[-1]:
            self.projection = nn.Sequential(
                BN_Linear(embed_dim[-1], self.feature_dim),
                nn.ReLU(),
            )
        else:
            self.projection = nn.Identity()
        
        # 重新定义分类头(基于特征维度)
        if num_classes > 0:
            self.head = BN_Linear(self.feature_dim, num_classes)
            if distillation:
                self.head_dist = BN_Linear(self.feature_dim, num_classes)
    
    def forward_features(self, x):
        """
        提取特征,不经过分类头
        用于聚类或特征提取
        """
        x = self.patch_embed(x)
        x = self.blocks1(x)
        x = self.blocks2(x)
        x = self.blocks3(x)
        x = self.blocks4(x)
        x = torch.nn.functional.adaptive_avg_pool2d(x, 1).flatten(1)
        x = self.projection(x)
        return x
    
    def forward(self, x, return_features=False):
        """
        x: 输入图像
        return_features: 是否只返回特征向量(用于聚类)
                        False时返回分类logits(用于分类)
        
        如果return_features=True: 返回特征向量 (batch_size, feature_dim)
        如果return_features=False: 返回分类logits (batch_size, num_classes)
        """
        features = self.forward_features(x)
        
        if return_features:
            # 返回特征向量用于聚类
            return features
        
        # 返回分类结果
        if self.distillation:
            x = self.head(features), self.head_dist(features)
            if not self.training:
                x = (x[0] + x[1]) / 2
        else:
            x = self.head(features)
        
        return x
    
    def get_features(self, x):
        """
        提取特征向量
        """
        return self.forward(x, return_features=True)
    
    def classify(self, x):
        """
        进行分类
        """
        return self.forward(x, return_features=False)


def _cfg_artist(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 
        'input_size': (3, 224, 224), 
        'pool_size': (4, 4),
        'crop_pct': .9, 
        'interpolation': 'bicubic',
        'mean': (0.485, 0.456, 0.406), 
        'std': (0.229, 0.224, 0.225),
        'first_conv': 'patch_embed.0.c', 
        'classifier': ('head.linear', 'head_dist.linear'),
        **kwargs
    }


default_cfgs_artist = dict(
    lsnet_t_artist = _cfg_artist(),
    lsnet_s_artist = _cfg_artist(),
    lsnet_b_artist = _cfg_artist(),
    lsnet_l_artist = _cfg_artist(),
    lsnet_xl_artist = _cfg_artist(),
)


def _create_lsnet_artist(variant, pretrained=False, **kwargs):
    cfg = default_cfgs_artist.get(variant, None)
    if cfg is not None:
        kwargs.setdefault('default_cfg', cfg)
        kwargs.setdefault('pretrained_cfg', cfg)
    model = build_model_with_cfg(
        LSNetArtist,
        variant,
        pretrained,
        **kwargs,
    )
    return model


@register_model
def lsnet_t_artist(num_classes=1000, distillation=False, pretrained=False, 
                   feature_dim=None, use_projection=True, **kwargs):
    model = _create_lsnet_artist(
        "lsnet_t_artist",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation, 
        img_size=224,
        patch_size=8,
        embed_dim=[64, 128, 256, 384],
        depth=[0, 2, 8, 10],
        num_heads=[3, 3, 3, 4],
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model


@register_model
def lsnet_s_artist(num_classes=1000, distillation=False, pretrained=False,
                   feature_dim=None, use_projection=True, **kwargs):
    model = _create_lsnet_artist(
        "lsnet_s_artist",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation,
        img_size=224,
        patch_size=8,
        embed_dim=[96, 192, 320, 448],
        depth=[1, 2, 8, 10],
        num_heads=[3, 3, 3, 4],
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model


@register_model
def lsnet_b_artist(num_classes=1000, distillation=False, pretrained=False,
                   feature_dim=None, use_projection=True, **kwargs):
    model = _create_lsnet_artist(
        "lsnet_b_artist",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation,
        img_size=224,
        patch_size=8,
        embed_dim=[128, 256, 384, 512],
        depth=[4, 6, 8, 10],
        num_heads=[3, 3, 3, 4],
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model


@register_model
def lsnet_l_artist(num_classes=1000, distillation=False, pretrained=False,
                   feature_dim=None, use_projection=True, **kwargs):
    model = _create_lsnet_artist(
        "lsnet_l_artist",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation,
        img_size=224,
        patch_size=8,
        embed_dim=[160, 320, 480, 640],
        depth=[6, 8, 12, 14],
        num_heads=[4, 4, 4, 4],
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model


@register_model
def lsnet_xl_artist(num_classes=1000, distillation=False, pretrained=False,
                    feature_dim=None, use_projection=True, **kwargs):
    model = _create_lsnet_artist(
        "lsnet_xl_artist",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation,
        img_size=224,
        patch_size=8,
        embed_dim=[192, 384, 576, 768],
        depth=[8, 12, 16, 20],
        num_heads=[6, 6, 6, 6],
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model