Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from langgraph.graph.message import add_messages
|
|
| 6 |
from langchain_openai import ChatOpenAI
|
| 7 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 8 |
from langchain_core.messages import HumanMessage, ToolMessage, AIMessage
|
| 9 |
-
from langgraph.prebuilt import tools_condition
|
| 10 |
import os
|
| 11 |
|
| 12 |
# Streamlit UI Header
|
|
@@ -31,52 +31,38 @@ class State(TypedDict):
|
|
| 31 |
# Initialize LLM and Tools
|
| 32 |
llm = ChatOpenAI(model="gpt-4o-mini")
|
| 33 |
tool = TavilySearchResults(max_results=2)
|
| 34 |
-
|
|
|
|
| 35 |
|
| 36 |
# Agent Node
|
| 37 |
def Agent(state: State):
|
| 38 |
-
st.sidebar.write("Agent
|
| 39 |
response = llm_with_tools.invoke(state["messages"])
|
| 40 |
st.sidebar.write("Agent Response:", response)
|
| 41 |
return {"messages": [response]}
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
def ExecuteTools(state: State):
|
| 45 |
-
tool_calls = state["messages"][-1].tool_calls
|
| 46 |
-
responses = []
|
| 47 |
-
|
| 48 |
-
if tool_calls:
|
| 49 |
-
for call in tool_calls:
|
| 50 |
-
tool_name = call["name"]
|
| 51 |
-
args = call["args"]
|
| 52 |
-
st.sidebar.write("Tool Call Detected:", tool_name, args)
|
| 53 |
-
|
| 54 |
-
if tool_name == "tavily_search_results_json":
|
| 55 |
-
tool_response = tool.invoke({"query": args["query"]})
|
| 56 |
-
st.sidebar.write("Tool Response:", tool_response)
|
| 57 |
-
responses.append(ToolMessage(content=str(tool_response), tool_call_id=call["id"]))
|
| 58 |
-
return {"messages": responses}
|
| 59 |
-
|
| 60 |
-
# Memory Checkpoint
|
| 61 |
memory = MemorySaver()
|
| 62 |
-
|
| 63 |
-
# Build the Graph
|
| 64 |
graph = StateGraph(State)
|
|
|
|
|
|
|
| 65 |
graph.add_node("Agent", Agent)
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
graph.
|
|
|
|
| 70 |
graph.set_entry_point("Agent")
|
| 71 |
|
| 72 |
-
# Compile
|
| 73 |
-
app = graph.compile(checkpointer=memory, interrupt_before=["
|
| 74 |
|
| 75 |
# Display Graph Visualization
|
| 76 |
st.subheader("Graph Visualization")
|
| 77 |
st.image(app.get_graph().draw_mermaid_png(), caption="Workflow Graph", use_container_width=True)
|
| 78 |
|
| 79 |
-
#
|
| 80 |
st.subheader("Run the Workflow")
|
| 81 |
user_input = st.text_input("Enter a message to start the graph:", "Search for the weather in Uttar Pradesh")
|
| 82 |
thread_id = st.text_input("Thread ID", "1")
|
|
@@ -88,13 +74,11 @@ if st.button("Execute Workflow"):
|
|
| 88 |
st.write("### Execution Outputs")
|
| 89 |
outputs = []
|
| 90 |
|
|
|
|
| 91 |
try:
|
| 92 |
-
# Stream the graph execution
|
| 93 |
for event in app.stream(input_message, thread, stream_mode="values"):
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
outputs.append(output_message.content)
|
| 97 |
-
st.sidebar.write("Intermediate State:", event["messages"])
|
| 98 |
|
| 99 |
# Display Intermediate Outputs
|
| 100 |
if outputs:
|
|
@@ -103,27 +87,28 @@ if st.button("Execute Workflow"):
|
|
| 103 |
st.write(f"**Step {idx}:**")
|
| 104 |
st.code(output)
|
| 105 |
else:
|
| 106 |
-
st.warning("No outputs generated
|
| 107 |
|
| 108 |
-
#
|
| 109 |
st.subheader("Current State Snapshot")
|
| 110 |
snapshot = app.get_state(thread)
|
| 111 |
current_message = snapshot.values["messages"][-1]
|
| 112 |
st.code(current_message.pretty_print())
|
| 113 |
|
| 114 |
-
#
|
| 115 |
if hasattr(current_message, "tool_calls") and current_message.tool_calls:
|
| 116 |
tool_call_id = current_message.tool_calls[0]["id"]
|
| 117 |
-
|
| 118 |
-
|
|
|
|
| 119 |
new_messages = [
|
| 120 |
ToolMessage(content=manual_response, tool_call_id=tool_call_id),
|
| 121 |
AIMessage(content=manual_response),
|
| 122 |
]
|
| 123 |
app.update_state(thread, {"messages": new_messages})
|
| 124 |
-
st.success("State updated
|
| 125 |
st.code(app.get_state(thread).values["messages"][-1].pretty_print())
|
| 126 |
else:
|
| 127 |
-
st.
|
| 128 |
except Exception as e:
|
| 129 |
st.error(f"Error during execution: {e}")
|
|
|
|
| 6 |
from langchain_openai import ChatOpenAI
|
| 7 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 8 |
from langchain_core.messages import HumanMessage, ToolMessage, AIMessage
|
| 9 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 10 |
import os
|
| 11 |
|
| 12 |
# Streamlit UI Header
|
|
|
|
| 31 |
# Initialize LLM and Tools
|
| 32 |
llm = ChatOpenAI(model="gpt-4o-mini")
|
| 33 |
tool = TavilySearchResults(max_results=2)
|
| 34 |
+
tools = [tool]
|
| 35 |
+
llm_with_tools = llm.bind_tools(tools)
|
| 36 |
|
| 37 |
# Agent Node
|
| 38 |
def Agent(state: State):
|
| 39 |
+
st.sidebar.write("Agent received input:", state["messages"])
|
| 40 |
response = llm_with_tools.invoke(state["messages"])
|
| 41 |
st.sidebar.write("Agent Response:", response)
|
| 42 |
return {"messages": [response]}
|
| 43 |
|
| 44 |
+
# Set up Graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
memory = MemorySaver()
|
|
|
|
|
|
|
| 46 |
graph = StateGraph(State)
|
| 47 |
+
|
| 48 |
+
# Add nodes
|
| 49 |
graph.add_node("Agent", Agent)
|
| 50 |
+
tool_node = ToolNode(tools=[tool])
|
| 51 |
+
graph.add_node("tools", tool_node)
|
| 52 |
|
| 53 |
+
# Add edges
|
| 54 |
+
graph.add_conditional_edges("Agent", tools_condition)
|
| 55 |
+
graph.add_edge("tools", "Agent")
|
| 56 |
graph.set_entry_point("Agent")
|
| 57 |
|
| 58 |
+
# Compile with Breakpoint
|
| 59 |
+
app = graph.compile(checkpointer=memory, interrupt_before=["tools"])
|
| 60 |
|
| 61 |
# Display Graph Visualization
|
| 62 |
st.subheader("Graph Visualization")
|
| 63 |
st.image(app.get_graph().draw_mermaid_png(), caption="Workflow Graph", use_container_width=True)
|
| 64 |
|
| 65 |
+
# Input Section
|
| 66 |
st.subheader("Run the Workflow")
|
| 67 |
user_input = st.text_input("Enter a message to start the graph:", "Search for the weather in Uttar Pradesh")
|
| 68 |
thread_id = st.text_input("Thread ID", "1")
|
|
|
|
| 74 |
st.write("### Execution Outputs")
|
| 75 |
outputs = []
|
| 76 |
|
| 77 |
+
# Execute the workflow
|
| 78 |
try:
|
|
|
|
| 79 |
for event in app.stream(input_message, thread, stream_mode="values"):
|
| 80 |
+
st.code(event["messages"][-1].content)
|
| 81 |
+
outputs.append(event["messages"][-1].content)
|
|
|
|
|
|
|
| 82 |
|
| 83 |
# Display Intermediate Outputs
|
| 84 |
if outputs:
|
|
|
|
| 87 |
st.write(f"**Step {idx}:**")
|
| 88 |
st.code(output)
|
| 89 |
else:
|
| 90 |
+
st.warning("No outputs generated yet.")
|
| 91 |
|
| 92 |
+
# Show State Snapshot
|
| 93 |
st.subheader("Current State Snapshot")
|
| 94 |
snapshot = app.get_state(thread)
|
| 95 |
current_message = snapshot.values["messages"][-1]
|
| 96 |
st.code(current_message.pretty_print())
|
| 97 |
|
| 98 |
+
# Handle Tool Calls with Manual Input
|
| 99 |
if hasattr(current_message, "tool_calls") and current_message.tool_calls:
|
| 100 |
tool_call_id = current_message.tool_calls[0]["id"]
|
| 101 |
+
st.warning("Execution paused before tool execution. Provide manual input to resume.")
|
| 102 |
+
manual_response = st.text_area("Manual Tool Response", "Enter the tool's response here...")
|
| 103 |
+
if st.button("Resume Execution"):
|
| 104 |
new_messages = [
|
| 105 |
ToolMessage(content=manual_response, tool_call_id=tool_call_id),
|
| 106 |
AIMessage(content=manual_response),
|
| 107 |
]
|
| 108 |
app.update_state(thread, {"messages": new_messages})
|
| 109 |
+
st.success("State updated! Rerun the workflow to continue.")
|
| 110 |
st.code(app.get_state(thread).values["messages"][-1].pretty_print())
|
| 111 |
else:
|
| 112 |
+
st.info("No tool calls detected at this step.")
|
| 113 |
except Exception as e:
|
| 114 |
st.error(f"Error during execution: {e}")
|