Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from langgraph.graph.message import add_messages
|
|
| 6 |
from langchain_openai import ChatOpenAI
|
| 7 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 8 |
from langchain_core.messages import HumanMessage, ToolMessage, AIMessage
|
| 9 |
-
from langgraph.prebuilt import
|
| 10 |
import os
|
| 11 |
|
| 12 |
# Streamlit UI Header
|
|
@@ -31,20 +31,18 @@ class State(TypedDict):
|
|
| 31 |
# Initialize LLM and Tools
|
| 32 |
llm = ChatOpenAI(model="gpt-4o-mini")
|
| 33 |
tool = TavilySearchResults(max_results=2)
|
| 34 |
-
|
| 35 |
-
llm_with_tools = llm.bind_tools(tools)
|
| 36 |
|
| 37 |
-
#
|
| 38 |
def Agent(state: State):
|
| 39 |
st.sidebar.write("Agent Input State:", state["messages"])
|
| 40 |
response = llm_with_tools.invoke(state["messages"])
|
| 41 |
st.sidebar.write("Agent Response:", response)
|
| 42 |
return {"messages": [response]}
|
| 43 |
|
| 44 |
-
#
|
| 45 |
def ExecuteTools(state: State):
|
| 46 |
-
|
| 47 |
-
tool_calls = last_message.tool_calls
|
| 48 |
responses = []
|
| 49 |
|
| 50 |
if tool_calls:
|
|
@@ -54,9 +52,9 @@ def ExecuteTools(state: State):
|
|
| 54 |
st.sidebar.write("Tool Call Detected:", tool_name, args)
|
| 55 |
|
| 56 |
if tool_name == "tavily_search_results_json":
|
| 57 |
-
|
| 58 |
-
st.sidebar.write("Tool Response:",
|
| 59 |
-
responses.append(ToolMessage(content=str(
|
| 60 |
return {"messages": responses}
|
| 61 |
|
| 62 |
# Memory Checkpoint
|
|
@@ -67,7 +65,11 @@ graph = StateGraph(State)
|
|
| 67 |
graph.add_node("Agent", Agent)
|
| 68 |
graph.add_node("ExecuteTools", ExecuteTools)
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
graph.add_edge("ExecuteTools", "Agent")
|
| 72 |
graph.set_entry_point("Agent")
|
| 73 |
|
|
|
|
| 6 |
from langchain_openai import ChatOpenAI
|
| 7 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 8 |
from langchain_core.messages import HumanMessage, ToolMessage, AIMessage
|
| 9 |
+
from langgraph.prebuilt import tools_condition
|
| 10 |
import os
|
| 11 |
|
| 12 |
# Streamlit UI Header
|
|
|
|
| 31 |
# Initialize LLM and Tools
|
| 32 |
llm = ChatOpenAI(model="gpt-4o-mini")
|
| 33 |
tool = TavilySearchResults(max_results=2)
|
| 34 |
+
llm_with_tools = llm.bind_tools([tool])
|
|
|
|
| 35 |
|
| 36 |
+
# Agent Node
|
| 37 |
def Agent(state: State):
|
| 38 |
st.sidebar.write("Agent Input State:", state["messages"])
|
| 39 |
response = llm_with_tools.invoke(state["messages"])
|
| 40 |
st.sidebar.write("Agent Response:", response)
|
| 41 |
return {"messages": [response]}
|
| 42 |
|
| 43 |
+
# Tools Execution Node
|
| 44 |
def ExecuteTools(state: State):
|
| 45 |
+
tool_calls = state["messages"][-1].tool_calls
|
|
|
|
| 46 |
responses = []
|
| 47 |
|
| 48 |
if tool_calls:
|
|
|
|
| 52 |
st.sidebar.write("Tool Call Detected:", tool_name, args)
|
| 53 |
|
| 54 |
if tool_name == "tavily_search_results_json":
|
| 55 |
+
tool_response = tool.invoke({"query": args["query"]})
|
| 56 |
+
st.sidebar.write("Tool Response:", tool_response)
|
| 57 |
+
responses.append(ToolMessage(content=str(tool_response), tool_call_id=call["id"]))
|
| 58 |
return {"messages": responses}
|
| 59 |
|
| 60 |
# Memory Checkpoint
|
|
|
|
| 65 |
graph.add_node("Agent", Agent)
|
| 66 |
graph.add_node("ExecuteTools", ExecuteTools)
|
| 67 |
|
| 68 |
+
# Add Conditional Edge to Check for Tools
|
| 69 |
+
def custom_tools_condition(state: State):
|
| 70 |
+
return "True" if state["messages"][-1].tool_calls else "False"
|
| 71 |
+
|
| 72 |
+
graph.add_conditional_edges("Agent", custom_tools_condition, {"True": "ExecuteTools", "False": "Agent"})
|
| 73 |
graph.add_edge("ExecuteTools", "Agent")
|
| 74 |
graph.set_entry_point("Agent")
|
| 75 |
|