Commit
·
159cb1e
1
Parent(s):
a9bdf65
Implement LightGlue image matching app with Gradio interface and necessary dependencies
Browse files- app.py +175 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from transformers import AutoImageProcessor, AutoModel
|
| 4 |
+
from transformers.image_utils import to_numpy_array
|
| 5 |
+
import torch
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def process_images(image1, image2):
|
| 11 |
+
"""
|
| 12 |
+
Process two images and return a plot of the matching keypoints.
|
| 13 |
+
"""
|
| 14 |
+
if image1 is None or image2 is None:
|
| 15 |
+
return None
|
| 16 |
+
|
| 17 |
+
images = [image1, image2]
|
| 18 |
+
processor = AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint")
|
| 19 |
+
model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
|
| 20 |
+
|
| 21 |
+
inputs = processor(images, return_tensors="pt")
|
| 22 |
+
with torch.no_grad():
|
| 23 |
+
outputs = model(**inputs)
|
| 24 |
+
|
| 25 |
+
image_sizes = [[(image.height, image.width) for image in images]]
|
| 26 |
+
outputs = processor.post_process_keypoint_matching(
|
| 27 |
+
outputs, image_sizes, threshold=0.2
|
| 28 |
+
)
|
| 29 |
+
output = outputs[0]
|
| 30 |
+
|
| 31 |
+
image1 = to_numpy_array(image1)
|
| 32 |
+
image2 = to_numpy_array(image2)
|
| 33 |
+
|
| 34 |
+
height0, width0 = image1.shape[:2]
|
| 35 |
+
height1, width1 = image2.shape[:2]
|
| 36 |
+
|
| 37 |
+
# Create PIL image from numpy array
|
| 38 |
+
pil_img = Image.fromarray((image1 / 255.0 * 255).astype(np.uint8))
|
| 39 |
+
pil_img2 = Image.fromarray((image2 / 255.0 * 255).astype(np.uint8))
|
| 40 |
+
|
| 41 |
+
# Create Plotly figure
|
| 42 |
+
fig = go.Figure()
|
| 43 |
+
|
| 44 |
+
# Get keypoints
|
| 45 |
+
keypoints0_x, keypoints0_y = output["keypoints0"].unbind(1)
|
| 46 |
+
keypoints1_x, keypoints1_y = output["keypoints1"].unbind(1)
|
| 47 |
+
|
| 48 |
+
# Add a separate trace for each match (line + markers) to enable highlighting
|
| 49 |
+
for keypoint0_x, keypoint0_y, keypoint1_x, keypoint1_y, matching_score in zip(
|
| 50 |
+
keypoints0_x,
|
| 51 |
+
keypoints0_y,
|
| 52 |
+
keypoints1_x,
|
| 53 |
+
keypoints1_y,
|
| 54 |
+
output["matching_scores"],
|
| 55 |
+
):
|
| 56 |
+
color_val = matching_score.item()
|
| 57 |
+
color = f"rgba({int(255 * (1 - color_val))}, {int(255 * color_val)}, 0, 0.7)"
|
| 58 |
+
|
| 59 |
+
hover_text = (
|
| 60 |
+
f"Score: {matching_score.item():.2f}<br>"
|
| 61 |
+
f"Point 1: ({keypoint0_x.item():.1f}, {keypoint0_y.item():.1f})<br>"
|
| 62 |
+
f"Point 2: ({keypoint1_x.item():.1f}, {keypoint1_y.item():.1f})"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
fig.add_trace(
|
| 66 |
+
go.Scatter(
|
| 67 |
+
x=[keypoint0_x.item(), keypoint1_x.item() + width0],
|
| 68 |
+
y=[keypoint0_y.item(), keypoint1_y.item()],
|
| 69 |
+
mode="lines+markers",
|
| 70 |
+
line=dict(color=color, width=2),
|
| 71 |
+
marker=dict(color=color, size=5, opacity=0.8),
|
| 72 |
+
hoverinfo="text",
|
| 73 |
+
hovertext=hover_text,
|
| 74 |
+
showlegend=False,
|
| 75 |
+
)
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Update layout to use images as background
|
| 79 |
+
fig.update_layout(
|
| 80 |
+
title="LightGlue Keypoint Matching",
|
| 81 |
+
xaxis=dict(
|
| 82 |
+
range=[0, width0 + width1],
|
| 83 |
+
showgrid=False,
|
| 84 |
+
zeroline=False,
|
| 85 |
+
showticklabels=False,
|
| 86 |
+
),
|
| 87 |
+
yaxis=dict(
|
| 88 |
+
range=[max(height0, height1), 0],
|
| 89 |
+
showgrid=False,
|
| 90 |
+
zeroline=False,
|
| 91 |
+
showticklabels=False,
|
| 92 |
+
scaleanchor="x",
|
| 93 |
+
scaleratio=1,
|
| 94 |
+
),
|
| 95 |
+
margin=dict(l=0, r=0, t=50, b=0),
|
| 96 |
+
height=max(height0, height1),
|
| 97 |
+
width=width0 + width1,
|
| 98 |
+
images=[
|
| 99 |
+
dict(
|
| 100 |
+
source=pil_img,
|
| 101 |
+
xref="x",
|
| 102 |
+
yref="y",
|
| 103 |
+
x=0,
|
| 104 |
+
y=0,
|
| 105 |
+
sizex=width0,
|
| 106 |
+
sizey=height0,
|
| 107 |
+
sizing="stretch",
|
| 108 |
+
opacity=1,
|
| 109 |
+
layer="below",
|
| 110 |
+
),
|
| 111 |
+
dict(
|
| 112 |
+
source=pil_img2,
|
| 113 |
+
xref="x",
|
| 114 |
+
yref="y",
|
| 115 |
+
x=width0,
|
| 116 |
+
y=0,
|
| 117 |
+
sizex=width1,
|
| 118 |
+
sizey=height1,
|
| 119 |
+
sizing="stretch",
|
| 120 |
+
opacity=1,
|
| 121 |
+
layer="below",
|
| 122 |
+
),
|
| 123 |
+
],
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
return fig
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# Create the Gradio interface
|
| 130 |
+
with gr.Blocks(title="LightGlue Matching Demo") as demo:
|
| 131 |
+
gr.Markdown("# LightGlue Matching Demo")
|
| 132 |
+
gr.Markdown(
|
| 133 |
+
"Upload two images and get a side-by-side matching of your images using LightGlue."
|
| 134 |
+
)
|
| 135 |
+
gr.Markdown("""
|
| 136 |
+
## How to use:
|
| 137 |
+
1. Upload two images using the file uploaders above
|
| 138 |
+
2. Click the 'Match Images' button
|
| 139 |
+
3. View the matched output image below
|
| 140 |
+
|
| 141 |
+
The app will create a side-by-side matching of your images using LightGlue.
|
| 142 |
+
You can also select an example image pair from the dataset.
|
| 143 |
+
""")
|
| 144 |
+
|
| 145 |
+
with gr.Row():
|
| 146 |
+
# Input images on the same row
|
| 147 |
+
image1 = gr.Image(label="First Image", type="pil")
|
| 148 |
+
image2 = gr.Image(label="Second Image", type="pil")
|
| 149 |
+
|
| 150 |
+
# Process button
|
| 151 |
+
process_btn = gr.Button("Match Images", variant="primary")
|
| 152 |
+
|
| 153 |
+
# Output plot
|
| 154 |
+
output_plot = gr.Plot(label="Matching Results")
|
| 155 |
+
|
| 156 |
+
# Connect the function
|
| 157 |
+
process_btn.click(fn=process_images, inputs=[image1, image2], outputs=output_plot)
|
| 158 |
+
|
| 159 |
+
# Add some example usage
|
| 160 |
+
|
| 161 |
+
examples = gr.Dataset(
|
| 162 |
+
components=[image1, image2],
|
| 163 |
+
label="Example Image Pairs",
|
| 164 |
+
samples=[
|
| 165 |
+
[
|
| 166 |
+
"https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg",
|
| 167 |
+
"https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg",
|
| 168 |
+
],
|
| 169 |
+
],
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
examples.select(lambda x: (x[0], x[1]), [examples], [image1, image2])
|
| 173 |
+
|
| 174 |
+
if __name__ == "__main__":
|
| 175 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=5.34.2
|
| 2 |
+
Pillow>=10.0.0
|
| 3 |
+
numpy>=1.24.0
|
| 4 |
+
transformers
|
| 5 |
+
matplotlib
|
| 6 |
+
torch
|
| 7 |
+
plotly
|