Spaces:
Sleeping
Sleeping
File size: 10,695 Bytes
74bb5fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# app/gradio_app.py
from __future__ import annotations
import os
import time
import shutil
import uuid
from typing import List, Dict, Any, Tuple
import gradio as gr
# ---- External modules we rely on (light, stable) ----
# - ASR: faster-whisper wrapper you already have
# - TTS: local piper/ say via models/tts_router.py
# - LLM: optional local model; if missing, we fallback to a safe canned reply
try:
from models.asr_whisper import get_asr
except Exception:
get_asr = None
try:
from models.llm_chat import respond_chat as llm_respond_chat
except Exception:
llm_respond_chat = None
from models.tts_router import tts_synthesize, ensure_runtime_audio_dir
# =============================================================================
# Helpers (pure, modular)
# =============================================================================
def _safe_llm_reply(history: List[Dict[str, str]], user_text: str) -> str:
"""
Ask the chat LLM for a response. If it's not available, use a reasonable fallback.
"""
if llm_respond_chat is not None:
try:
# policy guard is optional; pass an empty dict
bot_text, _guard, _diag = llm_respond_chat(history or [], user_text, {})
if isinstance(bot_text, str) and bot_text.strip():
return bot_text.strip()
except Exception as e:
print("[LLM] fallback due to error:", e)
# Fallback (LLM unavailable or failed)
return "Hello! How can I assist you today? Would you like to place an order or inquire about the menu?"
def _asr_transcribe(aud_path: str) -> str:
"""
Transcribe audio to text. If ASR is unavailable, return a safe message.
"""
if not aud_path:
return "(no audio)"
if get_asr is None:
return "(ASR unavailable)"
try:
asr = get_asr()
out = asr.transcribe(aud_path)
return (out.get("text") or "").strip() or "(no speech detected)"
except Exception as e:
print("[ASR] error:", e)
return "(transcription failed)"
def _tts_from_text(text: str) -> str | None:
"""
Synthesize assistant text to a WAV in runtime/audio.
Returns a file path or None.
"""
if not (text and text.strip()):
return None
path = tts_synthesize(text.strip())
if path and os.path.exists(path):
return path
# always attempt one more minimal fallback to avoid empty path
return tts_synthesize("How can I help with FutureCafe?")
def _append_chat(history: List[Dict[str, str]] | None,
role: str, content: str) -> List[Dict[str, str]]:
hist = list(history or [])
hist.append({"role": role, "content": content})
return hist
def _startup_clean_runtime_audio():
"""
On app start, clean previous session audio artifacts.
"""
audio_dir = ensure_runtime_audio_dir()
try:
for name in os.listdir(audio_dir):
p = os.path.join(audio_dir, name)
if os.path.isfile(p):
os.remove(p)
except Exception as e:
print("[RUNTIME] Cannot clean runtime/audio:", e)
# =============================================================================
# Voice handlers (modular)
# =============================================================================
def handle_voice_turn(
user_audio_path: str,
voice_history: List[Dict[str, str]] | None
) -> Tuple[List[Dict[str, str]], str | None, Dict[str, Any]]:
"""
Single voice turn:
1) Transcribe user audio
2) Ask LLM for a reply (text)
3) TTS the reply to a WAV
4) Append both transcript and assistant text to the voice chat history
Returns: (new_voice_history, assistant_audio_path, diag_json)
"""
t0 = time.time()
transcript = _asr_transcribe(user_audio_path)
hist1 = _append_chat(voice_history, "user", transcript)
bot_text = _safe_llm_reply(hist1, transcript)
hist2 = _append_chat(hist1, "assistant", bot_text)
tts_path = _tts_from_text(bot_text)
diag = {
"intent": None,
"slots": {},
"tool_selected": None,
"tool_result": {
"transcript": transcript,
"llm_response": bot_text
},
"latency_ms": int((time.time() - t0) * 1000),
}
return hist2, tts_path, diag
# =============================================================================
# Text handlers (modular)
# =============================================================================
def handle_text_turn(
user_text: str,
chat_history: List[Dict[str, str]] | None
) -> Tuple[List[Dict[str, str]], Dict[str, Any], str]:
"""
Single text turn:
1) Append user text
2) Ask LLM for a reply
3) Append assistant text
4) Prepare diagnostics
Returns: (new_chat_history, diag_json, clear_text_value)
"""
t0 = time.time()
user_text = (user_text or "").strip()
if not user_text:
return (chat_history or []), {"intent": None, "slots": {}, "tool_selected": None, "tool_result": None, "latency_ms": 0}, ""
hist1 = _append_chat(chat_history, "user", user_text)
bot_text = _safe_llm_reply(hist1, user_text)
hist2 = _append_chat(hist1, "assistant", bot_text)
diag = {
"intent": None,
"slots": {},
"tool_selected": None,
"tool_result": {"user": user_text, "llm_response": bot_text},
"latency_ms": int((time.time() - t0) * 1000),
}
return hist2, diag, ""
# =============================================================================
# Fixed UI (as requested) + wiring
# =============================================================================
def build_demo():
"""
Fixed UI layout:
LEFT (Voice Call):
- voice_in (mic recorder)
- assistant_audio (autoplay)
- voice_chat (transcript chat)
- call_diag (JSON)
RIGHT (SMS/Chat):
- chat_box
- text_in (enter to send)
- chat_diag (JSON)
"""
_startup_clean_runtime_audio()
with gr.Blocks(title="FutureCafe Call/SMS Agent (MVP)") as demo:
gr.Markdown("### ☎️ FutureCafe AI Agent (MVP)\n**Call (voice)** on the left · **SMS/Chat** on the right")
# States
voice_state = gr.State([]) # list of {"role","content"} for voice transcript chat
chat_state = gr.State([]) # list of {"role","content"} for SMS chat
with gr.Row():
# ---------------- LEFT: VOICE ----------------
with gr.Column(scale=1, min_width=430):
gr.Markdown("#### 📞 Voice Call")
voice_in = gr.Audio(
label="Press Record → Speak → Stop (auto-sends)",
sources=["microphone"],
type="filepath",
format="wav",
interactive=True,
editable=False,
waveform_options={"show_recording_waveform": True},
)
assistant_audio = gr.Audio(
label="Assistant Response (auto-play)",
autoplay=True,
type="filepath",
interactive=False
)
voice_chat = gr.Chatbot(value=[], type="messages", height=220, label="Voice Chat (transcripts)")
call_diag = gr.JSON(
value={"intent": None, "slots": {}, "tool_selected": None, "tool_result": None, "latency_ms": 0},
label="Voice Diagnostics"
)
# ---------------- RIGHT: SMS / CHAT ----------------
with gr.Column(scale=1, min_width=430):
gr.Markdown("#### 💬 SMS / Chat")
chat_box = gr.Chatbot(value=[], type="messages", height=360, label=None)
text_in = gr.Textbox(
placeholder="Type here… e.g., “Any vegan pizzas?”, “Book a table for 2 at 7.” (Enter to send)",
label=None, lines=1
)
chat_diag = gr.JSON(
value={"intent": None, "slots": {}, "tool_selected": None, "tool_result": None, "latency_ms": 0},
label="Chat Diagnostics"
)
# ---------- Handlers (thin wrappers that call modular functions) ----------
def _clear_recorder():
# Only clears the recorder input; leaves assistant audio + transcripts intact
return gr.update(value=None, interactive=True)
def on_voice_change(aud_path: str | None, vhist: List[Dict[str, str]]):
if not aud_path:
# no audio; keep everything as-is
return vhist or [], None, {"intent": None, "slots": {}, "tool_selected": None, "tool_result": None, "latency_ms": 0}
new_vhist, tts_path, diag = handle_voice_turn(aud_path, vhist or [])
return new_vhist, tts_path, diag
def on_text_send(txt: str, hist: List[Dict[str, str]]):
new_hist, diag, clear_text = handle_text_turn(txt, hist or [])
return new_hist, diag, clear_text
# ---------- Wiring ----------
# Voice lane: update (voice_chat, assistant_audio, call_diag), do NOT clear recorder to keep it stable for now
# Try to fire on explicit Stop; fall back to generic change if not supported
rec_event = getattr(voice_in, "stop_recording", None)
if callable(rec_event):
rec_event(
on_voice_change,
inputs=[voice_in, voice_state],
outputs=[voice_chat, assistant_audio, call_diag],
).then(
_clear_recorder, # runs AFTER outputs are set → autoplay isn’t interrupted
inputs=None,
outputs=[voice_in],
)
else:
voice_in.change(
on_voice_change,
inputs=[voice_in, voice_state],
outputs=[voice_chat, assistant_audio, call_diag],
).then(
_clear_recorder,
inputs=None,
outputs=[voice_in],
)
# Keep voice_state in sync with what's shown in voice_chat (unchanged)
voice_chat.change(lambda x: x, inputs=[voice_chat], outputs=[voice_state])
# Text lane: Enter to send
text_in.submit(
on_text_send,
inputs=[text_in, chat_state],
outputs=[chat_box, chat_diag, text_in],
)
# Keep chat_state in sync with what's shown in chat_box
chat_box.change(lambda x: x, inputs=[chat_box], outputs=[chat_state])
return demo |