# app/llm_router.py from __future__ import annotations import os from typing import Any, Dict from utils.config import get_settings # --- Existing rule-based pieces kept as a fallback --- def small_router(text: str) -> dict: t = (text or "").lower() if any(k in t for k in ["hour", "open", "close", "address", "location"]): return {"tool": "get_hours", "args": {}} if any(k in t for k in ["menu", "vegan", "gluten", "pizza", "salad", "special"]): flt = [] for k in ["vegan", "gluten-free", "pizza", "salad"]: if k in t: flt.append(k) return {"tool": "menu_lookup", "args": {"filters": flt}} if any(k in t for k in ["reserve", "reservation", "book", "table"]): party = 2 if ("2" in t or "two" in t) else None time = "19:00" if "7" in t else None return {"tool": "create_reservation", "args": {"party_size": party, "datetime_str": time}} if any(k in t for k in ["order", "buy"]): return {"tool": "create_order", "args": {"items": []}} return {"tool": None, "args": {}} def nlg(intent: str, tool_result: dict, user_text: str) -> str: if intent == "get_hours": h = tool_result return f"We’re open {h['open']}–{h['close']} daily at {h['address']}." if intent == "menu_lookup": items = (tool_result or {}).get("items") or [] if not items: return "We have a variety of options—anything specific you’d like?" tops = ", ".join(f"{it['name']} (${it['price']})" for it in items[:3]) return f"Popular picks: {tops}." if intent == "create_reservation": if tool_result.get("ok"): return f"Reservation confirmed for {tool_result['party_size']} at {tool_result['when']}. Code {tool_result['reservation_id']}." return "I couldn't confirm that reservation—want me to try again?" if intent == "create_order": if tool_result.get("ok"): items = ", ".join(f"{it['qty']}× {it['name']}" for it in tool_result.get("items", [])) return f"Got it: {items}. Total ${tool_result.get('total', 0)}." return "I couldn't place that order—want me to try again?" return "Hello, this is Marta, an AI agent for FutureCafe. How can I help you today?" # --- Router mode switch (env-controlled) --- # ROUTER_MODE = "rules" | "llm" # - rules: use small_router (current behavior) # - llm: return no tool; the chat LLM handles everything in text/voice flows def _router_mode() -> str: s = get_settings() # allow either .env or process env to override return os.getenv("ROUTER_MODE", getattr(s, "ROUTER_MODE", "rules")).strip().lower() def respond(user_text: str) -> Dict[str, Any]: mode = _router_mode() if mode == "llm": # Pure LLM flow: don’t pre-select tools; downstream chat model decides. return {"tool": None, "args": {}} # Default / fallback: rule-based return small_router(user_text)