Spaces:
Sleeping
Sleeping
Updating to gradio (#1)
Browse files- Updating to gradio (5616bcf8c9f47f227c6a682fc46beb56afd901c0)
Co-authored-by: Derek Thomas <[email protected]>
app.py
CHANGED
|
@@ -1,104 +1,69 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import streamlit as st
|
| 4 |
import os
|
| 5 |
-
import torch
|
| 6 |
import datetime
|
| 7 |
-
import
|
| 8 |
import soundfile
|
| 9 |
from wavmark.utils import file_reader
|
| 10 |
-
import
|
| 11 |
-
import sys
|
| 12 |
-
import time
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
-
def my_read_file(audio_path, max_second):
|
| 17 |
signal, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, default_sr)
|
| 18 |
if audio_length_second > max_second:
|
| 19 |
signal = signal[0:default_sr * max_second]
|
| 20 |
audio_length_second = max_second
|
| 21 |
-
|
| 22 |
return signal, sr, audio_length_second
|
| 23 |
|
| 24 |
-
|
| 25 |
-
def add_watermark(audio_path, watermark_text):
|
| 26 |
-
#t1 = time.time()
|
| 27 |
assert len(watermark_text) == 16
|
| 28 |
watermark_npy = np.array([int(i) for i in watermark_text])
|
| 29 |
signal, sr, audio_length_second = my_read_file(audio_path, max_second_encode)
|
| 30 |
watermarked_signal, _ = wavmark.encode_watermark(model, signal, watermark_npy, show_progress=False)
|
| 31 |
-
|
| 32 |
tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + watermark_text + ".wav"
|
| 33 |
tmp_file_path = '/tmp/' + tmp_file_name
|
| 34 |
soundfile.write(tmp_file_path, watermarked_signal, sr)
|
| 35 |
-
#encode_time_cost = time.time() - t1
|
| 36 |
return tmp_file_path
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
def decode_watermark(audio_path):
|
| 41 |
assert os.path.exists(audio_path)
|
| 42 |
-
|
| 43 |
signal, sr, audio_length_second = my_read_file(audio_path, max_second_decode)
|
| 44 |
payload_decoded, _ = wavmark.decode_watermark(model, signal, show_progress=False)
|
| 45 |
-
|
| 46 |
if payload_decoded is None:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
payload_decoded_str = "".join([str(i) for i in payload_decoded])
|
| 50 |
-
st.write("Result:", payload_decoded_str)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def create_default_value():
|
| 54 |
-
if "def_value" not in st.session_state:
|
| 55 |
-
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
|
| 56 |
-
def_val_str = "".join([str(i) for i in def_val_npy])
|
| 57 |
-
st.session_state.def_value = def_val_str
|
| 58 |
-
|
| 59 |
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
def main():
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
|
| 68 |
-
|
| 69 |
-
See [WaveMarktoolkit](https://github.com/wavmark/wavmark) for further details.
|
| 70 |
-
"""
|
| 71 |
-
|
| 72 |
-
st.markdown(markdown_text)
|
| 73 |
-
|
| 74 |
-
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
|
| 75 |
-
|
| 76 |
-
if audio_file:
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
|
|
|
|
|
|
|
|
|
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
if action == "Add Watermark":
|
| 87 |
-
watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
|
| 88 |
-
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
|
| 89 |
-
if add_watermark_button:
|
| 90 |
-
if audio_file and watermark_text:
|
| 91 |
-
with st.spinner("Adding Watermark..."):
|
| 92 |
-
watermarked_audio = add_watermark(tmp_input_audio_file, watermark_text)
|
| 93 |
-
st.write("Watermarked Audio:")
|
| 94 |
-
print("watermarked_audio:", watermarked_audio)
|
| 95 |
-
st.audio(watermarked_audio, format="audio/wav")
|
| 96 |
-
|
| 97 |
-
elif action == "Decode Watermark":
|
| 98 |
-
if st.button("Decode"):
|
| 99 |
-
with st.spinner("Decoding..."):
|
| 100 |
-
decode_watermark(tmp_input_audio_file)
|
| 101 |
|
|
|
|
| 102 |
|
| 103 |
if __name__ == "__main__":
|
| 104 |
default_sr = 16000
|
|
@@ -108,5 +73,3 @@ if __name__ == "__main__":
|
|
| 108 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 109 |
model = wavmark.load_model().to(device)
|
| 110 |
main()
|
| 111 |
-
|
| 112 |
-
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
|
|
|
| 3 |
import os
|
|
|
|
| 4 |
import datetime
|
| 5 |
+
import torch
|
| 6 |
import soundfile
|
| 7 |
from wavmark.utils import file_reader
|
| 8 |
+
import wavmark
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
def my_read_file(audio_path, max_second, default_sr=16000):
|
| 11 |
signal, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, default_sr)
|
| 12 |
if audio_length_second > max_second:
|
| 13 |
signal = signal[0:default_sr * max_second]
|
| 14 |
audio_length_second = max_second
|
|
|
|
| 15 |
return signal, sr, audio_length_second
|
| 16 |
|
| 17 |
+
def add_watermark(audio_path, watermark_text, max_second_encode=60):
|
|
|
|
|
|
|
| 18 |
assert len(watermark_text) == 16
|
| 19 |
watermark_npy = np.array([int(i) for i in watermark_text])
|
| 20 |
signal, sr, audio_length_second = my_read_file(audio_path, max_second_encode)
|
| 21 |
watermarked_signal, _ = wavmark.encode_watermark(model, signal, watermark_npy, show_progress=False)
|
|
|
|
| 22 |
tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + watermark_text + ".wav"
|
| 23 |
tmp_file_path = '/tmp/' + tmp_file_name
|
| 24 |
soundfile.write(tmp_file_path, watermarked_signal, sr)
|
|
|
|
| 25 |
return tmp_file_path
|
| 26 |
|
| 27 |
+
def decode_watermark(audio_path, max_second_decode=30):
|
|
|
|
|
|
|
| 28 |
assert os.path.exists(audio_path)
|
|
|
|
| 29 |
signal, sr, audio_length_second = my_read_file(audio_path, max_second_decode)
|
| 30 |
payload_decoded, _ = wavmark.decode_watermark(model, signal, show_progress=False)
|
|
|
|
| 31 |
if payload_decoded is None:
|
| 32 |
+
return "No Watermark"
|
| 33 |
+
return "".join([str(i) for i in payload_decoded])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
def create_default_value(len_start_bit=16):
|
| 36 |
+
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
|
| 37 |
+
return "".join([str(i) for i in def_val_npy])
|
| 38 |
|
| 39 |
def main():
|
| 40 |
+
with gr.Blocks() as demo:
|
| 41 |
+
with gr.Row():
|
| 42 |
+
gr.Markdown("# Audio WaterMarking")
|
| 43 |
+
with gr.Row():
|
| 44 |
+
gr.Markdown("You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio. See [WaveMark toolkit](https://github.com/wavmark/wavmark) for further details.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
with gr.Row():
|
| 47 |
+
audio_file = gr.Audio(label="Upload Audio", type="filepath")
|
| 48 |
+
action = gr.Radio(["Add Watermark", "Decode Watermark"], label="Select Action")
|
| 49 |
+
watermark_text = gr.Textbox(label="The watermark (0, 1 list of length-16):", value=create_default_value())
|
| 50 |
+
submit_button = gr.Button("Submit")
|
| 51 |
|
| 52 |
+
with gr.Row():
|
| 53 |
+
output = gr.Audio(label="Processed Audio")
|
| 54 |
+
decode_output = gr.Textbox(label="Decoded Watermark")
|
| 55 |
|
| 56 |
+
def process_audio(audio_file, action, watermark_text):
|
| 57 |
+
if action == "Add Watermark" and audio_file:
|
| 58 |
+
return add_watermark(audio_file, watermark_text), None
|
| 59 |
+
elif action == "Decode Watermark" and audio_file:
|
| 60 |
+
return None, decode_watermark(audio_file)
|
| 61 |
+
else:
|
| 62 |
+
return None, None
|
| 63 |
|
| 64 |
+
submit_button.click(process_audio, inputs=[audio_file, action, watermark_text], outputs=[output, decode_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
demo.launch()
|
| 67 |
|
| 68 |
if __name__ == "__main__":
|
| 69 |
default_sr = 16000
|
|
|
|
| 73 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 74 |
model = wavmark.load_model().to(device)
|
| 75 |
main()
|
|
|
|
|
|