Spaces:
Running
on
T4
Running
on
T4
Update Modules/Vocoder/HiFiGAN_Generator.py
Browse files
Modules/Vocoder/HiFiGAN_Generator.py
CHANGED
|
@@ -15,10 +15,10 @@ class HiFiGAN(torch.nn.Module):
|
|
| 15 |
def __init__(self,
|
| 16 |
in_channels=128,
|
| 17 |
out_channels=1,
|
| 18 |
-
channels=
|
| 19 |
kernel_size=7,
|
| 20 |
-
upsample_scales=(8, 6,
|
| 21 |
-
upsample_kernel_sizes=(16, 12,
|
| 22 |
resblock_kernel_sizes=(3, 7, 11),
|
| 23 |
resblock_dilations=((1, 3, 5), (1, 3, 5), (1, 3, 5)),
|
| 24 |
use_additional_convs=True,
|
|
@@ -87,9 +87,6 @@ class HiFiGAN(torch.nn.Module):
|
|
| 87 |
1,
|
| 88 |
padding=(kernel_size - 1) // 2, ), torch.nn.Tanh(), )
|
| 89 |
|
| 90 |
-
self.out_proj_x1 = torch.nn.Conv1d(channels // 4, 1, 7, 1, padding=3)
|
| 91 |
-
self.out_proj_x2 = torch.nn.Conv1d(channels // 8, 1, 7, 1, padding=3)
|
| 92 |
-
|
| 93 |
# apply weight norm
|
| 94 |
self.apply_weight_norm()
|
| 95 |
|
|
@@ -118,13 +115,9 @@ class HiFiGAN(torch.nn.Module):
|
|
| 118 |
for j in range(self.num_blocks):
|
| 119 |
cs += self.blocks[i * self.num_blocks + j](c)
|
| 120 |
c = cs / self.num_blocks
|
| 121 |
-
if i == 1:
|
| 122 |
-
x1 = self.out_proj_x1(c)
|
| 123 |
-
elif i == 2:
|
| 124 |
-
x2 = self.out_proj_x2(c)
|
| 125 |
c = self.output_conv(c)
|
| 126 |
|
| 127 |
-
return c
|
| 128 |
|
| 129 |
def reset_parameters(self):
|
| 130 |
"""
|
|
@@ -185,4 +178,5 @@ class HiFiGAN(torch.nn.Module):
|
|
| 185 |
|
| 186 |
if __name__ == "__main__":
|
| 187 |
hifi = HiFiGAN()
|
| 188 |
-
print(f"HiFiGAN parameter count: {sum(p.numel() for p in hifi.parameters() if p.requires_grad)}")
|
|
|
|
|
|
| 15 |
def __init__(self,
|
| 16 |
in_channels=128,
|
| 17 |
out_channels=1,
|
| 18 |
+
channels=768,
|
| 19 |
kernel_size=7,
|
| 20 |
+
upsample_scales=(8, 6, 2, 2, 2), # CAREFUL: Avocodo assumes that there are always 4 upsample scales, because it takes intermediate results.
|
| 21 |
+
upsample_kernel_sizes=(16, 12, 4, 4, 4),
|
| 22 |
resblock_kernel_sizes=(3, 7, 11),
|
| 23 |
resblock_dilations=((1, 3, 5), (1, 3, 5), (1, 3, 5)),
|
| 24 |
use_additional_convs=True,
|
|
|
|
| 87 |
1,
|
| 88 |
padding=(kernel_size - 1) // 2, ), torch.nn.Tanh(), )
|
| 89 |
|
|
|
|
|
|
|
|
|
|
| 90 |
# apply weight norm
|
| 91 |
self.apply_weight_norm()
|
| 92 |
|
|
|
|
| 115 |
for j in range(self.num_blocks):
|
| 116 |
cs += self.blocks[i * self.num_blocks + j](c)
|
| 117 |
c = cs / self.num_blocks
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
c = self.output_conv(c)
|
| 119 |
|
| 120 |
+
return c
|
| 121 |
|
| 122 |
def reset_parameters(self):
|
| 123 |
"""
|
|
|
|
| 178 |
|
| 179 |
if __name__ == "__main__":
|
| 180 |
hifi = HiFiGAN()
|
| 181 |
+
print(f"HiFiGAN parameter count: {sum(p.numel() for p in hifi.parameters() if p.requires_grad)}")
|
| 182 |
+
print(hifi(torch.randn([1, 128, 100]))[0].shape)
|