Spaces:
Runtime error
Runtime error
XXXXRT666
commited on
Commit
Β·
5cfeca6
1
Parent(s):
7bdf3c3
Cache CUDA Graph
Browse files- AR/models/structs.py +4 -6
- AR/models/t2s_model_abc.py +33 -13
- AR/models/t2s_model_flash_attn.py +62 -38
- README.md +1 -1
- inference_webui.py +6 -3
AR/models/structs.py
CHANGED
|
@@ -1,3 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
| 3 |
from dataclasses import dataclass
|
|
@@ -48,7 +52,6 @@ class T2SSession:
|
|
| 48 |
self.y_len = y_len
|
| 49 |
|
| 50 |
# Cache
|
| 51 |
-
self.kv_cache = decoder.init_cache(bsz)
|
| 52 |
self.sampler = Sampler(bsz, decoder.vocab_size)
|
| 53 |
|
| 54 |
# Forward args
|
|
@@ -62,11 +65,6 @@ class T2SSession:
|
|
| 62 |
self.input_pos = torch.zeros_like(self.prefill_len)
|
| 63 |
self.input_pos.add_(self.prefill_len)
|
| 64 |
|
| 65 |
-
# CUDA Graph
|
| 66 |
-
self.graph: Optional[torch.cuda.CUDAGraph] = None
|
| 67 |
-
self.xy_pos_ = torch.rand((bsz, 1, decoder.embedding_dim)).to(dtype)
|
| 68 |
-
self.xy_dec_ = torch.rand((bsz, 1, decoder.embedding_dim)).to(dtype)
|
| 69 |
-
|
| 70 |
# EOS
|
| 71 |
self.completed = torch.Tensor([False] * len(self.x)).bool().to(device)
|
| 72 |
self.y_results: List[Tensor] = [None] * len(self.x) # type: ignore
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Modified From https://github.com/XXXXRT666/GPT-SoVITS
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
from __future__ import annotations
|
| 6 |
|
| 7 |
from dataclasses import dataclass
|
|
|
|
| 52 |
self.y_len = y_len
|
| 53 |
|
| 54 |
# Cache
|
|
|
|
| 55 |
self.sampler = Sampler(bsz, decoder.vocab_size)
|
| 56 |
|
| 57 |
# Forward args
|
|
|
|
| 65 |
self.input_pos = torch.zeros_like(self.prefill_len)
|
| 66 |
self.input_pos.add_(self.prefill_len)
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
# EOS
|
| 69 |
self.completed = torch.Tensor([False] * len(self.x)).bool().to(device)
|
| 70 |
self.y_results: List[Tensor] = [None] * len(self.x) # type: ignore
|
AR/models/t2s_model_abc.py
CHANGED
|
@@ -1,9 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from __future__ import annotations
|
| 2 |
|
| 3 |
import os
|
| 4 |
from abc import ABC, abstractmethod
|
| 5 |
from contextlib import nullcontext
|
| 6 |
from typing import Any, Dict, List, MutableSequence, Optional, Tuple, Type
|
|
|
|
| 7 |
|
| 8 |
import torch
|
| 9 |
import torch._inductor.config
|
|
@@ -31,6 +36,7 @@ class Sampler(nn.Module):
|
|
| 31 |
self.register_buffer("samples", torch.zeros((batch_size,), dtype=torch.int32), persistent=False)
|
| 32 |
|
| 33 |
self.__CUDAGraph: Optional[CUDAGraph] = None
|
|
|
|
| 34 |
|
| 35 |
def empty_cache(self):
|
| 36 |
self.logits.zero_()
|
|
@@ -139,6 +145,7 @@ class Sampler(nn.Module):
|
|
| 139 |
return idx_next
|
| 140 |
|
| 141 |
def capture(self, temperature: float, top_k: int, top_p: float):
|
|
|
|
| 142 |
s = torch.cuda.Stream()
|
| 143 |
s.wait_stream(torch.cuda.current_stream())
|
| 144 |
|
|
@@ -153,7 +160,9 @@ class Sampler(nn.Module):
|
|
| 153 |
with torch.cuda.graph(self.__CUDAGraph):
|
| 154 |
self.samples = self.__sample_cuda_graph(logits, temperature, top_k, top_p)
|
| 155 |
torch.cuda.synchronize()
|
|
|
|
| 156 |
|
|
|
|
| 157 |
def sample(
|
| 158 |
self,
|
| 159 |
logits: Tensor,
|
|
@@ -162,21 +171,32 @@ class Sampler(nn.Module):
|
|
| 162 |
top_k: int,
|
| 163 |
top_p: float,
|
| 164 |
repetition_penalty: float,
|
| 165 |
-
use_cuda_graph=False,
|
| 166 |
-
idx=-1,
|
| 167 |
) -> Tensor:
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
return samples
|
| 180 |
|
| 181 |
|
| 182 |
class KVCacheABC(ABC, nn.Module):
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Modified From https://github.com/XXXXRT666/GPT-SoVITS
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
from __future__ import annotations
|
| 6 |
|
| 7 |
import os
|
| 8 |
from abc import ABC, abstractmethod
|
| 9 |
from contextlib import nullcontext
|
| 10 |
from typing import Any, Dict, List, MutableSequence, Optional, Tuple, Type
|
| 11 |
+
import time
|
| 12 |
|
| 13 |
import torch
|
| 14 |
import torch._inductor.config
|
|
|
|
| 36 |
self.register_buffer("samples", torch.zeros((batch_size,), dtype=torch.int32), persistent=False)
|
| 37 |
|
| 38 |
self.__CUDAGraph: Optional[CUDAGraph] = None
|
| 39 |
+
|
| 40 |
|
| 41 |
def empty_cache(self):
|
| 42 |
self.logits.zero_()
|
|
|
|
| 145 |
return idx_next
|
| 146 |
|
| 147 |
def capture(self, temperature: float, top_k: int, top_p: float):
|
| 148 |
+
t1=time.perf_counter()
|
| 149 |
s = torch.cuda.Stream()
|
| 150 |
s.wait_stream(torch.cuda.current_stream())
|
| 151 |
|
|
|
|
| 160 |
with torch.cuda.graph(self.__CUDAGraph):
|
| 161 |
self.samples = self.__sample_cuda_graph(logits, temperature, top_k, top_p)
|
| 162 |
torch.cuda.synchronize()
|
| 163 |
+
print("Sample",time.perf_counter()-t1)
|
| 164 |
|
| 165 |
+
# @torch.jit.script
|
| 166 |
def sample(
|
| 167 |
self,
|
| 168 |
logits: Tensor,
|
|
|
|
| 171 |
top_k: int,
|
| 172 |
top_p: float,
|
| 173 |
repetition_penalty: float,
|
|
|
|
|
|
|
| 174 |
) -> Tensor:
|
| 175 |
+
|
| 176 |
+
previous_tokens = previous_tokens.long()
|
| 177 |
+
score = torch.gather(logits, dim=1, index=previous_tokens)
|
| 178 |
+
score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
|
| 179 |
+
logits.scatter_(dim=1, index=previous_tokens, src=score)
|
| 180 |
+
|
| 181 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 182 |
+
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
|
| 183 |
+
sorted_indices_to_remove = cum_probs > top_p
|
| 184 |
+
sorted_indices_to_remove[:, 0] = False # keep at least one option
|
| 185 |
+
indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
|
| 186 |
+
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
| 187 |
+
|
| 188 |
+
logits = logits / max(temperature, 1e-5)
|
| 189 |
+
|
| 190 |
+
v, _ = torch.topk(logits, top_k)
|
| 191 |
+
pivot = v[:, -1].unsqueeze(-1)
|
| 192 |
+
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
| 193 |
+
|
| 194 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 195 |
+
q = torch.empty_like(probs).exponential_(1.0)
|
| 196 |
+
idx_next = torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int32)
|
| 197 |
+
|
| 198 |
+
return idx_next
|
| 199 |
|
|
|
|
| 200 |
|
| 201 |
|
| 202 |
class KVCacheABC(ABC, nn.Module):
|
AR/models/t2s_model_flash_attn.py
CHANGED
|
@@ -1,8 +1,12 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import time
|
| 4 |
import traceback
|
| 5 |
-
from typing import Dict, List, Tuple
|
|
|
|
| 6 |
|
| 7 |
import flash_attn # type: ignore
|
| 8 |
import torch
|
|
@@ -50,7 +54,7 @@ class Attention(AttentionABC):
|
|
| 50 |
|
| 51 |
attn: Tensor = flash_attn.flash_attn_with_kvcache(
|
| 52 |
q, kv_cache.k_cache, kv_cache.v_cache, k, v, cache_seqlens=input_pos - 1
|
| 53 |
-
)
|
| 54 |
|
| 55 |
attn = self.dropout.forward(attn)
|
| 56 |
|
|
@@ -215,57 +219,66 @@ class CUDAGraphRunner:
|
|
| 215 |
|
| 216 |
self.decoder_path: os.PathLike
|
| 217 |
self.decoder_model: T2SDecoderABC = decoder_model.to(self.device, self.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
def _handle_request(self, request: T2SRequest) -> List[torch.Tensor]:
|
| 220 |
with self.device:
|
|
|
|
|
|
|
|
|
|
| 221 |
decoder = self.decoder_model
|
| 222 |
session = T2SSession(decoder, request, device=self.device, dtype=self.dtype)
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
bsz = y.size(0)
|
| 226 |
t1 = 0.0
|
| 227 |
-
|
|
|
|
| 228 |
torch_profiler = TorchProfiler(request.debug)
|
| 229 |
-
|
| 230 |
with torch_profiler.profiler():
|
| 231 |
for idx in tqdm(range(1500)):
|
| 232 |
if idx == 0:
|
| 233 |
-
xy_dec = decoder.h.prefill(session.xy_pos, session.attn_mask_nested,
|
| 234 |
xy_dec = torch.stack([t[[-1]] for t in xy_dec.unbind()])
|
| 235 |
else:
|
| 236 |
-
if request.use_cuda_graph and
|
| 237 |
-
|
| 238 |
args, kwds = decoder.pre_forward(session)
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
kv_caches=
|
| 244 |
*args,
|
| 245 |
**kwds,
|
| 246 |
)
|
| 247 |
|
| 248 |
with torch_profiler.record("AR"):
|
| 249 |
-
if
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
xy_dec =
|
| 253 |
else:
|
| 254 |
args, kwds = decoder.pre_forward(session)
|
| 255 |
xy_dec = decoder.h.forward(
|
| 256 |
-
|
| 257 |
session.xy_pos,
|
| 258 |
-
|
| 259 |
*args,
|
| 260 |
**kwds,
|
| 261 |
)
|
|
|
|
| 262 |
decoder.post_forward(idx, session)
|
| 263 |
logits = decoder.ar_predict_layer(xy_dec[:, -1])
|
| 264 |
-
|
| 265 |
|
| 266 |
if idx == 0:
|
| 267 |
-
logits
|
| 268 |
-
|
| 269 |
with torch_profiler.record("Sampling"):
|
| 270 |
samples = session.sampler.sample(
|
| 271 |
logits=logits,
|
|
@@ -274,27 +287,26 @@ class CUDAGraphRunner:
|
|
| 274 |
top_p=request.top_p,
|
| 275 |
repetition_penalty=request.repetition_penalty,
|
| 276 |
temperature=request.temperature,
|
| 277 |
-
use_cuda_graph=request.use_cuda_graph,
|
| 278 |
-
idx=idx,
|
| 279 |
)
|
| 280 |
|
| 281 |
session.y = torch.cat([session.y, samples], dim=1)
|
| 282 |
|
|
|
|
| 283 |
with torch_profiler.record("EOS"):
|
| 284 |
argmax_token = torch.argmax(logits, dim=-1)
|
| 285 |
sample_token = samples.squeeze(1)
|
| 286 |
EOS_mask = (argmax_token == decoder.EOS) | (sample_token == decoder.EOS)
|
| 287 |
-
|
| 288 |
newly_done_mask = EOS_mask & (~session.completed)
|
| 289 |
-
with torch_profiler.record("EOS2"):
|
| 290 |
newly_done_indices = newly_done_mask.nonzero()
|
| 291 |
-
|
|
|
|
| 292 |
if newly_done_indices.numel() > 0:
|
| 293 |
session.y_results[newly_done_indices[0]] = session.y[
|
| 294 |
newly_done_indices[0], session.y_len : -1
|
| 295 |
].squeeze(0)
|
| 296 |
session.completed[newly_done_indices] = True
|
| 297 |
-
|
| 298 |
if torch.all(session.completed).item():
|
| 299 |
if session.y.size(1) == 0:
|
| 300 |
session.y = torch.cat([session.y, torch.zeros_like(samples)], dim=1)
|
|
@@ -304,11 +316,12 @@ class CUDAGraphRunner:
|
|
| 304 |
f"T2S Decoding EOS {session.prefill_len.tolist().__str__().strip('[]')} -> \n{[i.size(0) for i in session.y_results].__str__().strip('[]')}"
|
| 305 |
)
|
| 306 |
tqdm.write(f"Infer Speed: {(idx - 1) / (time.perf_counter() - t1):.2f} token/s")
|
|
|
|
| 307 |
break
|
| 308 |
-
|
| 309 |
if (
|
| 310 |
-
request.early_stop_num != -1
|
| 311 |
-
and (session.y.size(1) - session.y_len) > request.early_stop_num
|
| 312 |
):
|
| 313 |
for i in range(bsz):
|
| 314 |
if not session.completed[i].item():
|
|
@@ -318,14 +331,25 @@ class CUDAGraphRunner:
|
|
| 318 |
|
| 319 |
with torch_profiler.record("NextPos"):
|
| 320 |
y_emb = decoder.ar_audio_embedding(session.y[:, -1:])
|
| 321 |
-
session.xy_pos = decoder.ar_audio_position.forward(
|
| 322 |
|
| 323 |
if idx == 2:
|
| 324 |
torch_profiler.start()
|
| 325 |
t1 = time.perf_counter()
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
|
| 330 |
match session.device.type:
|
| 331 |
case "cuda":
|
|
@@ -336,7 +360,7 @@ class CUDAGraphRunner:
|
|
| 336 |
torch.xpu.empty_cache()
|
| 337 |
case "mtia":
|
| 338 |
torch.mtia.empty_cache()
|
| 339 |
-
|
| 340 |
torch_profiler.end()
|
| 341 |
return session.y_results[: request.valid_length]
|
| 342 |
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Modified From https://github.com/XXXXRT666/GPT-SoVITS
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
import os
|
| 6 |
import time
|
| 7 |
import traceback
|
| 8 |
+
from typing import Dict, List, Tuple,Optional
|
| 9 |
+
import gradio as gr
|
| 10 |
|
| 11 |
import flash_attn # type: ignore
|
| 12 |
import torch
|
|
|
|
| 54 |
|
| 55 |
attn: Tensor = flash_attn.flash_attn_with_kvcache(
|
| 56 |
q, kv_cache.k_cache, kv_cache.v_cache, k, v, cache_seqlens=input_pos - 1
|
| 57 |
+
) # type: ignore
|
| 58 |
|
| 59 |
attn = self.dropout.forward(attn)
|
| 60 |
|
|
|
|
| 219 |
|
| 220 |
self.decoder_path: os.PathLike
|
| 221 |
self.decoder_model: T2SDecoderABC = decoder_model.to(self.device, self.dtype)
|
| 222 |
+
|
| 223 |
+
self.graph: Optional[torch.cuda.CUDAGraph]= None
|
| 224 |
+
self.xy_pos_ = torch.rand((1, 1, decoder_model.embedding_dim),device=device).to(dtype)
|
| 225 |
+
self.xy_dec_ = torch.rand((1, 1, decoder_model.embedding_dim),device=device).to(dtype)
|
| 226 |
+
self.kv_cache = decoder_model.init_cache(1)
|
| 227 |
+
self.input_pos = torch.tensor([10]).int().cuda()
|
| 228 |
|
| 229 |
def _handle_request(self, request: T2SRequest) -> List[torch.Tensor]:
|
| 230 |
with self.device:
|
| 231 |
+
for i in self.kv_cache:
|
| 232 |
+
i.empty()
|
| 233 |
+
|
| 234 |
decoder = self.decoder_model
|
| 235 |
session = T2SSession(decoder, request, device=self.device, dtype=self.dtype)
|
| 236 |
+
self.input_pos.copy_(session.input_pos)
|
| 237 |
+
|
|
|
|
| 238 |
t1 = 0.0
|
| 239 |
+
y = session.y
|
| 240 |
+
bsz = y.size(0)
|
| 241 |
torch_profiler = TorchProfiler(request.debug)
|
|
|
|
| 242 |
with torch_profiler.profiler():
|
| 243 |
for idx in tqdm(range(1500)):
|
| 244 |
if idx == 0:
|
| 245 |
+
xy_dec = decoder.h.prefill(session.xy_pos, session.attn_mask_nested, self.kv_cache)
|
| 246 |
xy_dec = torch.stack([t[[-1]] for t in xy_dec.unbind()])
|
| 247 |
else:
|
| 248 |
+
if request.use_cuda_graph and self.graph is None and torch.cuda.is_available():
|
| 249 |
+
self.xy_pos_.copy_(session.xy_pos)
|
| 250 |
args, kwds = decoder.pre_forward(session)
|
| 251 |
+
self.graph = decoder.capture(
|
| 252 |
+
self.input_pos,
|
| 253 |
+
self.xy_pos_,
|
| 254 |
+
self.xy_dec_,
|
| 255 |
+
kv_caches=self.kv_cache,
|
| 256 |
*args,
|
| 257 |
**kwds,
|
| 258 |
)
|
| 259 |
|
| 260 |
with torch_profiler.record("AR"):
|
| 261 |
+
if self.graph:
|
| 262 |
+
self.xy_pos_.copy_(session.xy_pos)
|
| 263 |
+
self.graph.replay()
|
| 264 |
+
xy_dec = self.xy_dec_.clone()
|
| 265 |
else:
|
| 266 |
args, kwds = decoder.pre_forward(session)
|
| 267 |
xy_dec = decoder.h.forward(
|
| 268 |
+
self.input_pos,
|
| 269 |
session.xy_pos,
|
| 270 |
+
self.kv_cache,
|
| 271 |
*args,
|
| 272 |
**kwds,
|
| 273 |
)
|
| 274 |
+
|
| 275 |
decoder.post_forward(idx, session)
|
| 276 |
logits = decoder.ar_predict_layer(xy_dec[:, -1])
|
| 277 |
+
self.input_pos.add_(1)
|
| 278 |
|
| 279 |
if idx == 0:
|
| 280 |
+
logits[:, -1] = float("-inf")
|
| 281 |
+
|
| 282 |
with torch_profiler.record("Sampling"):
|
| 283 |
samples = session.sampler.sample(
|
| 284 |
logits=logits,
|
|
|
|
| 287 |
top_p=request.top_p,
|
| 288 |
repetition_penalty=request.repetition_penalty,
|
| 289 |
temperature=request.temperature,
|
|
|
|
|
|
|
| 290 |
)
|
| 291 |
|
| 292 |
session.y = torch.cat([session.y, samples], dim=1)
|
| 293 |
|
| 294 |
+
|
| 295 |
with torch_profiler.record("EOS"):
|
| 296 |
argmax_token = torch.argmax(logits, dim=-1)
|
| 297 |
sample_token = samples.squeeze(1)
|
| 298 |
EOS_mask = (argmax_token == decoder.EOS) | (sample_token == decoder.EOS)
|
| 299 |
+
|
| 300 |
newly_done_mask = EOS_mask & (~session.completed)
|
|
|
|
| 301 |
newly_done_indices = newly_done_mask.nonzero()
|
| 302 |
+
|
| 303 |
+
|
| 304 |
if newly_done_indices.numel() > 0:
|
| 305 |
session.y_results[newly_done_indices[0]] = session.y[
|
| 306 |
newly_done_indices[0], session.y_len : -1
|
| 307 |
].squeeze(0)
|
| 308 |
session.completed[newly_done_indices] = True
|
| 309 |
+
|
| 310 |
if torch.all(session.completed).item():
|
| 311 |
if session.y.size(1) == 0:
|
| 312 |
session.y = torch.cat([session.y, torch.zeros_like(samples)], dim=1)
|
|
|
|
| 316 |
f"T2S Decoding EOS {session.prefill_len.tolist().__str__().strip('[]')} -> \n{[i.size(0) for i in session.y_results].__str__().strip('[]')}"
|
| 317 |
)
|
| 318 |
tqdm.write(f"Infer Speed: {(idx - 1) / (time.perf_counter() - t1):.2f} token/s")
|
| 319 |
+
gr.Info(f"Infer Speed: {(idx - 1) / (time.perf_counter() - t1):.2f} token/s",duration=0.75)
|
| 320 |
break
|
| 321 |
+
|
| 322 |
if (
|
| 323 |
+
(request.early_stop_num != -1
|
| 324 |
+
and (session.y.size(1) - session.y_len) > request.early_stop_num )or idx ==1499
|
| 325 |
):
|
| 326 |
for i in range(bsz):
|
| 327 |
if not session.completed[i].item():
|
|
|
|
| 331 |
|
| 332 |
with torch_profiler.record("NextPos"):
|
| 333 |
y_emb = decoder.ar_audio_embedding(session.y[:, -1:])
|
| 334 |
+
session.xy_pos = decoder.ar_audio_position.forward(self.input_pos - session.x_lens, y_emb)
|
| 335 |
|
| 336 |
if idx == 2:
|
| 337 |
torch_profiler.start()
|
| 338 |
t1 = time.perf_counter()
|
| 339 |
|
| 340 |
+
if idx == 51:
|
| 341 |
+
torch_profiler.end()
|
| 342 |
+
|
| 343 |
+
if idx % 100 == 0:
|
| 344 |
+
match session.device.type:
|
| 345 |
+
case "cuda":
|
| 346 |
+
torch.cuda.empty_cache()
|
| 347 |
+
case "mps":
|
| 348 |
+
torch.mps.empty_cache()
|
| 349 |
+
case "xpu":
|
| 350 |
+
torch.xpu.empty_cache()
|
| 351 |
+
case "mtia":
|
| 352 |
+
torch.mtia.empty_cache()
|
| 353 |
|
| 354 |
match session.device.type:
|
| 355 |
case "cuda":
|
|
|
|
| 360 |
torch.xpu.empty_cache()
|
| 361 |
case "mtia":
|
| 362 |
torch.mtia.empty_cache()
|
| 363 |
+
|
| 364 |
torch_profiler.end()
|
| 365 |
return session.y_results[: request.valid_length]
|
| 366 |
|
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: π€
|
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: inference_webui.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 4 |
colorFrom: indigo
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.20.0
|
| 8 |
app_file: inference_webui.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
inference_webui.py
CHANGED
|
@@ -57,6 +57,10 @@ import LangSegment
|
|
| 57 |
import spaces
|
| 58 |
import torch
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
version = "v2" # os.environ.get("version","v2")
|
| 61 |
cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base")
|
| 62 |
bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large")
|
|
@@ -540,7 +544,7 @@ def get_tts_wav(
|
|
| 540 |
if i_text in cache and if_freeze == True:
|
| 541 |
pred_semantic = cache[i_text]
|
| 542 |
else:
|
| 543 |
-
with torch.no_grad():
|
| 544 |
t2s_request = T2SRequest(
|
| 545 |
[all_phoneme_ids.squeeze(0)],
|
| 546 |
all_phoneme_len,
|
|
@@ -552,7 +556,7 @@ def get_tts_wav(
|
|
| 552 |
temperature=temperature,
|
| 553 |
early_stop_num=1500,
|
| 554 |
use_cuda_graph=True,
|
| 555 |
-
debug=True,
|
| 556 |
)
|
| 557 |
t2s_result = t2s_model.generate(t2s_request)
|
| 558 |
pred_semantic = t2s_result.result
|
|
@@ -836,5 +840,4 @@ if __name__ == "__main__":
|
|
| 836 |
server_name="0.0.0.0",
|
| 837 |
inbrowser=True,
|
| 838 |
show_api=False,
|
| 839 |
-
server_port=1111,
|
| 840 |
)
|
|
|
|
| 57 |
import spaces
|
| 58 |
import torch
|
| 59 |
|
| 60 |
+
import threading
|
| 61 |
+
|
| 62 |
+
lock = threading.Lock()
|
| 63 |
+
|
| 64 |
version = "v2" # os.environ.get("version","v2")
|
| 65 |
cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base")
|
| 66 |
bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large")
|
|
|
|
| 544 |
if i_text in cache and if_freeze == True:
|
| 545 |
pred_semantic = cache[i_text]
|
| 546 |
else:
|
| 547 |
+
with torch.no_grad(),lock:
|
| 548 |
t2s_request = T2SRequest(
|
| 549 |
[all_phoneme_ids.squeeze(0)],
|
| 550 |
all_phoneme_len,
|
|
|
|
| 556 |
temperature=temperature,
|
| 557 |
early_stop_num=1500,
|
| 558 |
use_cuda_graph=True,
|
| 559 |
+
# debug=True,
|
| 560 |
)
|
| 561 |
t2s_result = t2s_model.generate(t2s_request)
|
| 562 |
pred_semantic = t2s_result.result
|
|
|
|
| 840 |
server_name="0.0.0.0",
|
| 841 |
inbrowser=True,
|
| 842 |
show_api=False,
|
|
|
|
| 843 |
)
|