File size: 16,829 Bytes
aad9d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12fedcc
 
 
 
 
 
 
 
 
 
 
 
aad9d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ccfff
 
 
 
aad9d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12fedcc
aad9d66
 
 
 
 
 
 
 
 
12fedcc
aad9d66
12fedcc
aad9d66
 
 
12fedcc
 
aad9d66
 
 
1594e97
 
 
 
 
 
 
 
aad9d66
 
1594e97
aad9d66
 
 
 
1594e97
aad9d66
 
 
 
 
 
 
 
12fedcc
aad9d66
 
 
 
 
 
 
 
 
 
 
 
 
12fedcc
aad9d66
12fedcc
aad9d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12fedcc
aad9d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ccfff
 
 
 
 
 
 
 
12fedcc
aad9d66
 
d5ccfff
aad9d66
 
d5ccfff
aad9d66
 
 
 
 
 
 
 
 
 
 
 
d5ccfff
aad9d66
 
 
 
 
 
 
 
 
 
 
 
d5ccfff
aad9d66
 
d5ccfff
aad9d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ccfff
aad9d66
 
 
 
 
d5ccfff
aad9d66
 
 
 
d5ccfff
 
 
aad9d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5ccfff
aad9d66
 
 
 
d5ccfff
aad9d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""
DiffRhythm 2 music generation service
Integrates with the DiffRhythm 2 model for music generation with vocals
"""
import os
import sys
import logging
import uuid
from pathlib import Path
from typing import Optional
import numpy as np
import soundfile as sf
import torch
import torchaudio
import json

# Import spaces for ZeroGPU support
try:
    import spaces
    HAS_SPACES = True
except ImportError:
    HAS_SPACES = False
    # Create a dummy decorator for local development
    class spaces:
        @staticmethod
        def GPU(func):
            return func

# Configure espeak-ng path for phonemizer (required by g2p module)
# Note: Environment configuration handled by hf_config.py for HuggingFace Spaces
# or by launch scripts for local development
if "PHONEMIZER_ESPEAK_PATH" not in os.environ:
    # Fallback for local development without launcher
    espeak_path = Path(__file__).parent.parent.parent / "external" / "espeak-ng"
    if espeak_path.exists():
        os.environ["PHONEMIZER_ESPEAK_LIBRARY"] = str(espeak_path / "libespeak-ng.dll")
        os.environ["PHONEMIZER_ESPEAK_PATH"] = str(espeak_path)

# Add DiffRhythm2 source code to path (cloned repo, not pip package)
diffrhythm2_src = Path(__file__).parent.parent.parent / "models" / "diffrhythm2_source"
sys.path.insert(0, str(diffrhythm2_src))

logger = logging.getLogger(__name__)

class DiffRhythmService:
    """Service for DiffRhythm 2 music generation"""
    
    def __init__(self, model_path: str):
        """
        Initialize DiffRhythm 2 service
        
        Args:
            model_path: Path to DiffRhythm 2 model files
        """
        self.model_path = model_path
        self.model = None
        self.mulan = None
        self.lrc_tokenizer = None
        self.decoder = None
        self.is_initialized = False
        self.device = self._get_device()
        logger.info(f"DiffRhythm 2 service created with model path: {model_path}")
        logger.info(f"Using device: {self.device}")
    
    def _get_device(self):
        """Get compute device - for ZeroGPU, always start with CPU"""
        # For ZeroGPU Spaces, device allocation happens dynamically inside @spaces.GPU functions
        # Always return CPU here - GPU allocation is handled by the decorator
        logger.info("Using CPU for initialization (GPU allocated by @spaces.GPU decorator)")
        return torch.device("cpu")
    
    def _initialize_model(self):
        """Lazy load the DiffRhythm 2 model when first needed"""
        if self.is_initialized:
            return
        
        try:
            logger.info("Initializing DiffRhythm 2 model...")
            
            from diffrhythm2.cfm import CFM
            from diffrhythm2.backbones.dit import DiT
            from bigvgan.model import Generator
            from muq import MuQMuLan
            from huggingface_hub import hf_hub_download
            from safetensors.torch import load_file
            
            # Load DiffRhythm 2 model
            repo_id = "ASLP-lab/DiffRhythm2"
            
            # Download model files
            model_ckpt = hf_hub_download(
                repo_id=repo_id,
                filename="model.safetensors",
                local_dir=self.model_path,
                local_files_only=False,
            )
            model_config_path = hf_hub_download(
                repo_id=repo_id,
                filename="config.json",
                local_dir=self.model_path,
                local_files_only=False,
            )
            
            # Load config
            with open(model_config_path) as f:
                model_config = json.load(f)
            
            model_config['use_flex_attn'] = False
            
            # Create model (keep on CPU initially for ZeroGPU compatibility)
            self.model = CFM(
                transformer=DiT(**model_config),
                num_channels=model_config['mel_dim'],
                block_size=model_config['block_size'],
            )
            
            # Load weights
            ckpt = load_file(model_ckpt)
            self.model.load_state_dict(ckpt)
            # Note: Model will be moved to device inside GPU-decorated function
            
            # Load MuLan for style encoding (keep on CPU initially)
            self.mulan = MuQMuLan.from_pretrained(
                "OpenMuQ/MuQ-MuLan-large",
                cache_dir=os.path.join(self.model_path, "mulan")
            )
            # Note: MuLan will be moved to device inside GPU-decorated function
            
            # Load tokenizer
            from g2p.g2p_generation import chn_eng_g2p
            
            # Look for vocab.json in the cloned DiffRhythm2 source
            diffrhythm2_src = Path(__file__).parent.parent.parent / "models" / "diffrhythm2_source"
            vocab_path = diffrhythm2_src / "g2p" / "g2p" / "vocab.json"
            
            if not vocab_path.exists():
                # Fallback: try downloading from HF Hub
                logger.warning(f"vocab.json not found at {vocab_path}, trying to download from HF Hub")
                vocab_path = hf_hub_download(
                    repo_id=repo_id,
                    filename="vocab.json",
                    local_dir=self.model_path,
                    local_files_only=False,
                )
            
            logger.info(f"Loading vocab from: {vocab_path}")
            with open(vocab_path, 'r') as f:
                phone2id = json.load(f)['vocab']
            
            self.lrc_tokenizer = {
                'phone2id': phone2id,
                'g2p': chn_eng_g2p
            }
            
            # Load decoder (BigVGAN vocoder) - keep on CPU initially
            decoder_ckpt = hf_hub_download(
                repo_id=repo_id,
                filename="decoder.bin",
                local_dir=self.model_path,
                local_files_only=False,
            )
            decoder_config = hf_hub_download(
                repo_id=repo_id,
                filename="decoder.json",
                local_dir=self.model_path,
                local_files_only=False,
            )
            
            # Load decoder (keep on CPU initially)
            self.decoder = Generator(decoder_config, decoder_ckpt)
            # Note: Decoder will be moved to device inside GPU-decorated function
            
            logger.info("✅ DiffRhythm 2 model loaded successfully")
            
            self.is_initialized = True
            logger.info("DiffRhythm 2 service initialized")
            
        except Exception as e:
            logger.error(f"Failed to initialize DiffRhythm 2: {str(e)}", exc_info=True)
            raise RuntimeError(f"Could not load DiffRhythm 2 model: {str(e)}")
    
    def generate(
        self,
        prompt: str,
        duration: int = 30,
        sample_rate: int = 44100,
        lyrics: Optional[str] = None,
        reference_audio: Optional[str] = None
    ) -> str:
        """
        Generate music from text prompt with optional vocals/lyrics and style reference
        
        Args:
            prompt: Text description of desired music
            duration: Length in seconds
            sample_rate: Audio sample rate
            lyrics: Optional lyrics for vocals
            reference_audio: Optional path to reference audio for style consistency
            
        Returns:
            Path to generated audio file
        """
        try:
            self._initialize_model()
            
            if lyrics:
                logger.info(f"Generating music with vocals: prompt='{prompt}', lyrics_length={len(lyrics)}")
            else:
                logger.info(f"Generating instrumental music: prompt='{prompt}'")
            
            if reference_audio and os.path.exists(reference_audio):
                logger.info(f"Using style reference: {reference_audio}")
            
            logger.info(f"Duration={duration}s")
            
            # Try to generate with DiffRhythm 2
            if self.model is not None:
                audio = self._generate_with_diffrhythm2(prompt, lyrics, duration, sample_rate, reference_audio)
            else:
                # Fallback: Generate placeholder
                logger.warning("Using placeholder audio generation")
                audio = self._generate_placeholder(duration, sample_rate)
            
            # Save to file
            output_dir = os.path.join('outputs', 'music')
            os.makedirs(output_dir, exist_ok=True)
            
            clip_id = str(uuid.uuid4())
            output_path = os.path.join(output_dir, f"{clip_id}.wav")
            
            # Ensure audio is in correct format (channels, samples) for soundfile
            # If audio is 1D (mono), keep it as is. If 2D, ensure it's (samples, channels)
            if audio.ndim == 1:
                # Mono audio - soundfile expects (samples,) shape
                sf.write(output_path, audio, sample_rate)
            else:
                # Stereo/multi-channel - soundfile expects (samples, channels)
                sf.write(output_path, audio, sample_rate)
            
            logger.info(f"Music generated successfully: {output_path}")
            
            return output_path
            
        except Exception as e:
            logger.error(f"Music generation failed: {str(e)}", exc_info=True)
            raise RuntimeError(f"Failed to generate music: {str(e)}")
    
    @spaces.GPU(duration=60)
    def _generate_with_diffrhythm2(
        self, 
        prompt: str, 
        lyrics: Optional[str], 
        duration: int, 
        sample_rate: int,
        reference_audio: Optional[str] = None
    ) -> np.ndarray:
        """
        Generate music using DiffRhythm 2 model with optional style reference
        
        Args:
            prompt: Music description (used as style prompt)
            lyrics: Lyrics for vocals (required for vocal generation)
            duration: Duration in seconds
            sample_rate: Sample rate
            reference_audio: Optional path to reference audio for style guidance
            
        Returns:
            Audio array
        """
        try:
            logger.info("Generating with DiffRhythm 2 model...")
            
            # For ZeroGPU, dynamically detect device inside GPU-decorated function
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            logger.info(f"GPU-decorated function using device: {device}")
            
            # Move models to detected device (GPU if available via ZeroGPU)
            self.model = self.model.to(device)
            self.mulan = self.mulan.to(device)
            self.decoder = self.decoder.to(device)
            
            # Prepare lyrics tokens
            if lyrics:
                lyrics_token = self._tokenize_lyrics(lyrics, device)
            else:
                # For instrumental, use empty structure
                lyrics_token = torch.tensor([500, 511], dtype=torch.long, device=device)  # [start][stop]
            
            # Encode style prompt with optional reference audio blending
            with torch.no_grad():
                if reference_audio and os.path.exists(reference_audio):
                    try:
                        import torchaudio
                        # Load reference audio
                        ref_waveform, ref_sr = torchaudio.load(reference_audio)
                        if ref_sr != 24000:  # MuLan expects 24kHz
                            ref_waveform = torchaudio.functional.resample(ref_waveform, ref_sr, 24000)
                        
                        # Encode reference audio with MuLan
                        ref_waveform = ref_waveform.to(device)
                        audio_style_embed = self.mulan(audios=ref_waveform.unsqueeze(0))
                        text_style_embed = self.mulan(texts=[prompt])
                        
                        # Blend reference audio style with text prompt (70% audio, 30% text)
                        style_prompt_embed = 0.7 * audio_style_embed + 0.3 * text_style_embed
                        logger.info("Using blended style: 70% reference audio + 30% text prompt")
                    except Exception as e:
                        logger.warning(f"Failed to use reference audio, using text prompt only: {e}")
                        style_prompt_embed = self.mulan(texts=[prompt])
                else:
                    style_prompt_embed = self.mulan(texts=[prompt])
                    
            style_prompt_embed = style_prompt_embed.to(device).squeeze(0)
            
            # Use FP16 if on GPU
            if device.type != 'cpu':
                self.model = self.model.half()
                self.decoder = self.decoder.half()
                style_prompt_embed = style_prompt_embed.half()
            
            # Generate latent representation
            with torch.inference_mode():
                latent = self.model.sample_block_cache(
                    text=lyrics_token.unsqueeze(0),
                    duration=int(duration * 5),  # DiffRhythm uses 5 frames per second
                    style_prompt=style_prompt_embed.unsqueeze(0),
                    steps=16,  # Sampling steps
                    cfg_strength=2.0,  # Classifier-free guidance
                    process_bar=False
                )
                
                # Decode to audio
                latent = latent.transpose(1, 2)
                audio = self.decoder.decode_audio(latent, overlap=5, chunk_size=20)
            
            # Convert to numpy
            audio = audio.float().cpu().numpy().squeeze()
            
            # Ensure correct length
            target_length = int(duration * sample_rate)
            if len(audio) > target_length:
                audio = audio[:target_length]
            elif len(audio) < target_length:
                audio = np.pad(audio, (0, target_length - len(audio)))
            
            # Resample if needed
            if sample_rate != 24000:  # DiffRhythm 2 native sample rate
                import scipy.signal as signal
                audio = signal.resample(audio, target_length)
            
            logger.info("✅ DiffRhythm 2 generation successful")
            return audio.astype(np.float32)
            
        except Exception as e:
            logger.error(f"DiffRhythm 2 generation failed: {str(e)}")
            return self._generate_placeholder(duration, sample_rate)
    
    def _tokenize_lyrics(self, lyrics: str, device: torch.device = None) -> torch.Tensor:
        """
        Tokenize lyrics for DiffRhythm 2
        
        Args:
            lyrics: Lyrics text
            device: Target device for tensor
            
        Returns:
            Tokenized lyrics tensor
        """
        if device is None:
            device = torch.device("cpu")
            
        try:
            # Structure tags
            STRUCT_INFO = {
                "[start]": 500,
                "[end]": 501,
                "[intro]": 502,
                "[verse]": 503,
                "[chorus]": 504,
                "[outro]": 505,
                "[inst]": 506,
                "[solo]": 507,
                "[bridge]": 508,
                "[hook]": 509,
                "[break]": 510,
                "[stop]": 511,
                "[space]": 512
            }
            
            # Convert lyrics to phonemes and tokens
            phone, tokens = self.lrc_tokenizer['g2p'](lyrics)
            tokens = [x + 1 for x in tokens]  # Offset by 1
            
            # Add structure: [start] + lyrics + [stop]
            lyrics_tokens = [STRUCT_INFO['[start]']] + tokens + [STRUCT_INFO['[stop]']]
            
            return torch.tensor(lyrics_tokens, dtype=torch.long, device=device)
            
        except Exception as e:
            logger.error(f"Lyrics tokenization failed: {str(e)}")
            # Return minimal structure
            return torch.tensor([500, 511], dtype=torch.long, device=device)
    
    def _generate_placeholder(self, duration: int, sample_rate: int) -> np.ndarray:
        """
        Generate placeholder audio (for testing without actual model)
        
        Args:
            duration: Length in seconds
            sample_rate: Sample rate
            
        Returns:
            Audio array
        """
        logger.warning("Using placeholder audio - DiffRhythm 2 model not loaded")
        
        # Generate simple sine wave as placeholder
        t = np.linspace(0, duration, int(duration * sample_rate))
        frequency = 440  # A4 note
        audio = 0.3 * np.sin(2 * np.pi * frequency * t)
        
        return audio.astype(np.float32)