Spaces:
Running
on
Zero
Running
on
Zero
File size: 42,367 Bytes
aad9d66 900e408 aad9d66 af591f7 aad9d66 900e408 5ca43e1 aad9d66 5ca43e1 aad9d66 900e408 12c39f7 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 5ca43e1 aad9d66 5ca43e1 109fc4c 5ca43e1 109fc4c 5ca43e1 109fc4c 5ca43e1 aad9d66 7951896 aad9d66 af591f7 aad9d66 aed4e95 aad9d66 af591f7 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 24997a8 aad9d66 24997a8 aad9d66 24997a8 aad9d66 24997a8 aad9d66 24997a8 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 491f52f aad9d66 491f52f aad9d66 491f52f aad9d66 491f52f aad9d66 491f52f aad9d66 491f52f aad9d66 491f52f 5ca43e1 491f52f 5ca43e1 109fc4c 12c39f7 6cb9ca2 4713106 5b7bfb6 12c39f7 5b7bfb6 12c39f7 4713106 5ca43e1 4713106 5ca43e1 5b7bfb6 4713106 5ca43e1 4713106 6cb9ca2 4713106 6cb9ca2 4713106 5b7bfb6 4713106 5b7bfb6 4713106 109fc4c 12c39f7 6cb9ca2 4713106 5b7bfb6 12c39f7 5b7bfb6 12c39f7 4713106 5ca43e1 4713106 5ca43e1 5b7bfb6 4713106 5ca43e1 6cb9ca2 4713106 6cb9ca2 4713106 5b7bfb6 4713106 5b7bfb6 4713106 aad9d66 0c7e16c aad9d66 7951896 aad9d66 12c39f7 7951896 aad9d66 7951896 5ca43e1 109fc4c 5ca43e1 109fc4c 7951896 5ca43e1 7951896 4713106 7951896 109fc4c 7951896 5ca43e1 109fc4c 5ca43e1 7951896 5ca43e1 7951896 4713106 7951896 4713106 109fc4c 4713106 109fc4c 4713106 109fc4c 4713106 0c7e16c 4713106 109fc4c 0c7e16c 109fc4c 0c7e16c 109fc4c 0c7e16c 109fc4c 0c7e16c 109fc4c 0c7e16c 109fc4c 4713106 109fc4c 4713106 aad9d66 109fc4c aad9d66 5ca43e1 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 12c39f7 aad9d66 5ca43e1 491f52f 5ca43e1 aad9d66 491f52f aad9d66 4713106 109fc4c 4713106 12c39f7 5b7bfb6 5ca43e1 491f52f 5ca43e1 4713106 109fc4c 4713106 12c39f7 5b7bfb6 5ca43e1 491f52f 5ca43e1 4713106 aad9d66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 |
"""
Music Generation Studio - HuggingFace Spaces Deployment
Main application file for Gradio interface
"""
import os
import sys
import gradio as gr
import logging
from pathlib import Path
import shutil
import subprocess
# Import spaces for ZeroGPU support
try:
import spaces
HAS_SPACES = True
except ImportError:
HAS_SPACES = False
# Create a dummy decorator for local development
class spaces:
@staticmethod
def GPU(func):
return func
# Run DiffRhythm2 source setup if needed
setup_script = Path(__file__).parent / "setup_diffrhythm2_src.sh"
if setup_script.exists():
try:
subprocess.run(["bash", str(setup_script)], check=True)
except Exception as e:
print(f"Warning: Failed to run setup script: {e}")
# Configure environment for HuggingFace Spaces (espeak-ng paths, etc.)
import hf_config
# Setup paths for HuggingFace Spaces
SPACE_DIR = Path(__file__).parent
sys.path.insert(0, str(SPACE_DIR / 'backend'))
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Import services
try:
from services.diffrhythm_service import DiffRhythmService
from services.lyricmind_service import LyricMindService
from services.timeline_service import TimelineService
from services.export_service import ExportService
from config.settings import Config
from utils.prompt_analyzer import PromptAnalyzer
except ImportError as e:
logger.error(f"Import error: {e}")
raise
# Initialize configuration
config = Config()
# Create necessary directories
os.makedirs("outputs", exist_ok=True)
os.makedirs("outputs/music", exist_ok=True)
os.makedirs("outputs/mixed", exist_ok=True)
os.makedirs("models", exist_ok=True)
os.makedirs("logs", exist_ok=True)
# Initialize services - these persist at module level
timeline_service = TimelineService()
export_service = ExportService()
# Lazy-load AI services (heavy models)
diffrhythm_service = None
lyricmind_service = None
def get_diffrhythm_service():
"""Lazy load DiffRhythm service"""
global diffrhythm_service
if diffrhythm_service is None:
logger.info("Loading DiffRhythm2 model...")
diffrhythm_service = DiffRhythmService(model_path=config.DIFFRHYTHM_MODEL_PATH)
logger.info("DiffRhythm2 model loaded")
return diffrhythm_service
def get_lyricmind_service():
"""Lazy load LyricMind service"""
global lyricmind_service
if lyricmind_service is None:
logger.info("Loading LyricMind model...")
lyricmind_service = LyricMindService(model_path=config.LYRICMIND_MODEL_PATH)
logger.info("LyricMind model loaded")
return lyricmind_service
@spaces.GPU
def generate_lyrics(prompt: str, progress=gr.Progress()):
"""Generate lyrics from prompt using analysis"""
try:
if not prompt or not prompt.strip():
return "β Please enter a prompt"
# Fixed duration for all clips
duration = 32
progress(0, desc="π Analyzing prompt...")
logger.info(f"Generating lyrics for: {prompt}")
# Analyze prompt
analysis = PromptAnalyzer.analyze(prompt)
genre = analysis.get('genres', ['general'])[0] if analysis.get('genres') else 'general'
mood = analysis.get('mood', 'unknown')
logger.info(f"Analysis - Genre: {genre}, Mood: {mood}")
progress(0.3, desc=f"βοΈ Generating {genre} lyrics...")
service = get_lyricmind_service()
lyrics = service.generate(
prompt=prompt,
duration=duration,
prompt_analysis=analysis
)
progress(1.0, desc="β
Lyrics generated!")
return lyrics
except Exception as e:
logger.error(f"Error generating lyrics: {e}", exc_info=True)
return f"β Error: {str(e)}"
@spaces.GPU
def generate_music(prompt: str, lyrics: str, lyrics_mode: str, position: str, context_length: int, timeline_state: dict, progress=gr.Progress()):
"""Generate music clip and add to timeline"""
try:
# Restore timeline from state
if timeline_state and 'clips' in timeline_state:
timeline_service.clips = []
for clip_data in timeline_state['clips']:
from models.schemas import TimelineClip
clip = TimelineClip(**clip_data)
timeline_service.clips.append(clip)
logger.info(f"[STATE] Restored {len(timeline_service.clips)} clips from state")
if not prompt or not prompt.strip():
return "β Please enter a music prompt", get_timeline_display(), None, timeline_state
# Fixed duration for all clips
duration = 32
# Estimate time (CPU on HF Spaces)
est_time = int(duration * 4) # Conservative estimate for CPU
progress(0, desc=f"π Analyzing prompt... (Est. {est_time}s)")
logger.info(f"Generating music: {prompt}, mode={lyrics_mode}, duration={duration}s")
# Analyze prompt
analysis = PromptAnalyzer.analyze(prompt)
genre = analysis.get('genres', ['general'])[0] if analysis.get('genres') else 'general'
bpm = analysis.get('bpm', 120)
mood = analysis.get('mood', 'neutral')
logger.info(f"Analysis - Genre: {genre}, BPM: {bpm}, Mood: {mood}")
# Apply style consistency from previous clips within context window
# Auto-disable context if this is the first clip
clips = timeline_service.get_all_clips()
effective_context_length = 0 if len(clips) == 0 else context_length
if effective_context_length > 0 and clips:
# Calculate which clips fall within the context window
total_duration = timeline_service.get_total_duration()
context_start = max(0, total_duration - effective_context_length)
context_clips = [c for c in clips if c['start_time'] >= context_start]
if context_clips:
logger.info(f"Using {len(context_clips)} clips for style consistency (context: {effective_context_length}s)")
# Enhance prompt with style consistency guidance
prompt = f"{prompt} (maintaining consistent {genre} style at {bpm} BPM with {mood} mood)"
else:
logger.info("No clips in context window")
else:
if len(clips) == 0:
logger.info("First clip - style consistency disabled")
else:
logger.info("Style consistency disabled (context length: 0)")
# Determine lyrics based on mode
lyrics_to_use = None
if lyrics_mode == "Instrumental":
logger.info("Generating instrumental (no vocals)")
progress(0.1, desc=f"πΉ Preparing instrumental generation... ({est_time}s)")
elif lyrics_mode == "User Lyrics":
if not lyrics or not lyrics.strip():
return "β Please enter lyrics or switch mode", get_timeline_display(), None
lyrics_to_use = lyrics.strip()
logger.info(f"Using user-provided lyrics (length: {len(lyrics_to_use)} chars)")
logger.info(f"First 100 chars: {lyrics_to_use[:100]}")
progress(0.1, desc=f"π€ Preparing vocal generation... ({est_time}s)")
elif lyrics_mode == "Auto Lyrics":
if lyrics and lyrics.strip():
lyrics_to_use = lyrics.strip()
logger.info("Using existing lyrics from textbox")
progress(0.1, desc=f"π€ Using provided lyrics... ({est_time}s)")
else:
progress(0.1, desc="βοΈ Generating lyrics...")
logger.info("Auto-generating lyrics...")
lyric_service = get_lyricmind_service()
lyrics_to_use = lyric_service.generate(
prompt=prompt,
duration=duration,
prompt_analysis=analysis
)
logger.info(f"Generated {len(lyrics_to_use)} characters of lyrics")
progress(0.25, desc=f"π΅ Lyrics ready, generating music... ({est_time}s)")
# Generate music
progress(0.3, desc=f"πΌ Generating {genre} at {bpm} BPM... ({est_time}s)")
service = get_diffrhythm_service()
final_path = service.generate(
prompt=prompt,
duration=duration,
lyrics=lyrics_to_use
)
# Add to timeline
progress(0.9, desc="π Adding to timeline...")
clip_id = os.path.basename(final_path).split('.')[0]
logger.info(f"[GENERATE] About to add clip: {clip_id}, position: {position}")
logger.info(f"[GENERATE] Timeline service ID: {id(timeline_service)}")
logger.info(f"[GENERATE] Clips before add: {len(timeline_service.clips)}")
from models.schemas import ClipPosition
clip_info = timeline_service.add_clip(
clip_id=clip_id,
file_path=final_path,
duration=float(duration),
position=ClipPosition(position)
)
logger.info(f"Music added to timeline at position {clip_info['timeline_position']}")
logger.info(f"[GENERATE] Clips after add: {len(timeline_service.clips)}")
# Build status message
progress(1.0, desc="β
Complete!")
status_msg = f"β
Music generated successfully!\n"
status_msg += f"πΈ Genre: {genre} | π₯ BPM: {bpm} | π Mood: {mood}\n"
status_msg += f"π€ Mode: {lyrics_mode} | π Position: {position}\n"
if lyrics_mode == "Auto Lyrics" and lyrics_to_use and not lyrics:
status_msg += "βοΈ (Lyrics auto-generated)"
# Save timeline to state
new_state = {
'clips': [{
'clip_id': c.clip_id,
'file_path': c.file_path,
'duration': c.duration,
'timeline_position': c.timeline_position,
'start_time': c.start_time,
'music_path': c.music_path
} for c in timeline_service.clips]
}
logger.info(f"[STATE] Saved {len(new_state['clips'])} clips to state")
return status_msg, get_timeline_display(), final_path, new_state
except Exception as e:
logger.error(f"Error generating music: {e}", exc_info=True)
return f"β Error: {str(e)}", get_timeline_display(), None, timeline_state
def get_timeline_display():
"""Get timeline clips as HTML visualization with waveform-style display"""
clips = timeline_service.get_all_clips()
if not clips:
return "<div style='text-align:center; padding:40px; color:#888;'>π Timeline is empty. Generate clips to get started!</div>"
total_duration = timeline_service.get_total_duration()
# Build HTML timeline
html = f"""
<div style="font-family: Arial, sans-serif; background: #1a1a1a; padding: 20px; border-radius: 8px; color: white;">
<div style="margin-bottom: 15px; font-size: 14px; color: #aaa;">
<strong>π Timeline:</strong> {len(clips)} clips | Total: {format_duration(total_duration)}
</div>
<div style="background: #2a2a2a; border-radius: 6px; padding: 15px; position: relative; min-height: 80px;">
<div style="position: absolute; top: 10px; left: 15px; right: 15px; height: 60px; background: #333; border-radius: 4px; overflow: hidden;">
"""
# Calculate pixel width (scale to fit)
if total_duration > 0:
pixels_per_second = 800 / total_duration # 800px total width
else:
pixels_per_second = 10
# Add clip blocks
colors = ['#8b5cf6', '#ec4899', '#06b6d4', '#10b981', '#f59e0b', '#ef4444']
for i, clip in enumerate(clips):
start_px = clip['start_time'] * pixels_per_second
width_px = clip['duration'] * pixels_per_second
color = colors[i % len(colors)]
# Create waveform-style bars
bars = ''.join([
f'<div style="display:inline-block; width:2px; height:{20 + (i*7 % 30)}px; background:rgba(255,255,255,0.3); margin:0 1px; vertical-align:bottom;"></div>'
for i in range(min(int(width_px / 4), 50))
])
html += f"""
<div style="position: absolute; left: {start_px}px; width: {width_px}px; height: 60px;
background: linear-gradient(135deg, {color} 0%, {color}dd 100%);
border-radius: 4px; border: 1px solid rgba(255,255,255,0.2);
display: flex; align-items: center; justify-content: center;
overflow: hidden; box-shadow: 0 2px 4px rgba(0,0,0,0.3);">
<div style="position: absolute; bottom: 5px; left: 0; right: 0; height: 40px; display: flex; align-items: flex-end; justify-content: space-evenly; padding: 0 5px;">
{bars}
</div>
<div style="position: relative; z-index: 1; font-size: 11px; font-weight: bold;
text-shadow: 0 1px 2px rgba(0,0,0,0.5); text-align: center; padding: 0 5px;">
Clip {i+1}<br>{format_duration(clip['duration'])}
</div>
</div>
"""
html += """
</div>
<div style="margin-top: 75px; font-size: 11px; color: #888;">
<div style="display: flex; justify-content: space-between;">
<span>0:00</span>
<span>{}</span>
</div>
</div>
</div>
</div>
""".format(format_duration(total_duration))
return html
def remove_clip(clip_number: int, timeline_state: dict):
"""Remove a clip from timeline"""
try:
# Restore timeline from state
if timeline_state and 'clips' in timeline_state:
timeline_service.clips = []
for clip_data in timeline_state['clips']:
from models.schemas import TimelineClip
clip = TimelineClip(**clip_data)
timeline_service.clips.append(clip)
clips = timeline_service.get_all_clips()
if not clips:
return "π Timeline is empty", get_timeline_display(), timeline_state
if clip_number < 1 or clip_number > len(clips):
return f"β Invalid clip number. Choose 1-{len(clips)}", get_timeline_display(), timeline_state
clip_id = clips[clip_number - 1]['clip_id']
timeline_service.remove_clip(clip_id)
# Save updated state
new_state = {
'clips': [{
'clip_id': c.clip_id,
'file_path': c.file_path,
'duration': c.duration,
'timeline_position': c.timeline_position,
'start_time': c.start_time,
'music_path': c.music_path
} for c in timeline_service.clips]
}
return f"β
Clip {clip_number} removed", get_timeline_display(), new_state
except Exception as e:
logger.error(f"Error removing clip: {e}", exc_info=True)
return f"β Error: {str(e)}", get_timeline_display(), timeline_state
def clear_timeline(timeline_state: dict):
"""Clear all clips from timeline"""
try:
timeline_service.clear()
new_state = {'clips': []}
return "β
Timeline cleared", get_timeline_display(), new_state
except Exception as e:
logger.error(f"Error clearing timeline: {e}", exc_info=True)
return f"β Error: {str(e)}", get_timeline_display(), timeline_state
def export_timeline(filename: str, export_format: str, timeline_state: dict, progress=gr.Progress()):
"""Export timeline to audio file"""
try:
# Restore timeline from state
if timeline_state and 'clips' in timeline_state:
timeline_service.clips = []
for clip_data in timeline_state['clips']:
from models.schemas import TimelineClip
clip = TimelineClip(**clip_data)
timeline_service.clips.append(clip)
logger.info(f"[STATE] Restored {len(timeline_service.clips)} clips for export")
clips = timeline_service.get_all_clips()
if not clips:
return "β No clips to export", None, timeline_state
if not filename or not filename.strip():
filename = "output"
progress(0, desc="π Merging clips...")
logger.info(f"Exporting timeline: {filename}.{export_format}")
export_service.timeline_service = timeline_service
progress(0.5, desc="πΎ Encoding audio...")
output_path = export_service.merge_clips(
filename=filename,
export_format=export_format
)
if output_path:
progress(1.0, desc="β
Export complete!")
return f"β
Exported: {os.path.basename(output_path)}", output_path, timeline_state
else:
return "β Export failed", None, timeline_state
except Exception as e:
logger.error(f"Error exporting: {e}", exc_info=True)
return f"β Error: {str(e)}", None, timeline_state
def get_timeline_playback(timeline_state: dict):
"""Get merged timeline audio for playback"""
try:
# Restore timeline from state
if timeline_state and 'clips' in timeline_state:
timeline_service.clips = []
for clip_data in timeline_state['clips']:
from models.schemas import TimelineClip
clip = TimelineClip(**clip_data)
timeline_service.clips.append(clip)
logger.info(f"[STATE] Restored {len(timeline_service.clips)} clips for playback")
clips = timeline_service.get_all_clips()
if not clips:
return None
# Use export service to merge clips
export_service.timeline_service = timeline_service
output_path = export_service.merge_clips(
filename="timeline_preview",
export_format="wav"
)
logger.info(f"Timeline playback ready: {output_path}")
return output_path
except Exception as e:
logger.error(f"Error creating playback: {e}", exc_info=True)
return None
def preview_mastering_preset(preset_name: str, timeline_state: dict):
"""Preview mastering preset on the most recent clip"""
try:
# Restore timeline from state
if timeline_state and 'clips' in timeline_state:
timeline_service.clips = []
for clip_data in timeline_state['clips']:
from models.schemas import TimelineClip
clip = TimelineClip(**clip_data)
timeline_service.clips.append(clip)
clips = timeline_service.get_all_clips()
if not clips:
return None, "β No clips in timeline to preview"
# Use the most recent clip for preview
latest_clip = clips[-1]
clip_path = latest_clip['file_path']
if not os.path.exists(clip_path):
return None, f"β Clip file not found: {clip_path}"
# Extract preset name
preset_key = preset_name.split(" - ")[0].lower().replace(" ", "_")
# Create temporary preview file
import tempfile
preview_path = os.path.join(tempfile.gettempdir(), f"preview_{latest_clip['clip_id']}.wav")
from services.mastering_service import MasteringService
mastering_service = MasteringService()
# Apply preset to preview file
mastering_service.apply_preset(
audio_path=clip_path,
preset_name=preset_key,
output_path=preview_path
)
logger.info(f"Created mastering preview: {preview_path}")
return preview_path, f"β
Preview ready: {preset_name.split(' - ')[0]} applied to latest clip"
except Exception as e:
logger.error(f"Error creating preview: {e}", exc_info=True)
return None, f"β Preview error: {str(e)}"
def apply_mastering_preset(preset_name: str, timeline_state: dict):
"""Apply mastering preset to all clips in timeline"""
try:
logger.info(f"[STATE DEBUG] apply_mastering_preset called")
logger.info(f"[STATE DEBUG] timeline_state type: {type(timeline_state)}")
logger.info(f"[STATE DEBUG] timeline_state value: {timeline_state}")
# Restore timeline from state
if timeline_state and 'clips' in timeline_state:
timeline_service.clips = []
for clip_data in timeline_state['clips']:
from models.schemas import TimelineClip
clip = TimelineClip(**clip_data)
timeline_service.clips.append(clip)
logger.info(f"[STATE] Restored {len(timeline_service.clips)} clips for mastering")
else:
logger.warning(f"[STATE DEBUG] State restoration failed - timeline_state is None or missing 'clips' key")
clips = timeline_service.get_all_clips()
logger.info(f"[MASTERING DEBUG] Retrieved {len(clips)} clips from timeline")
if not clips:
logger.warning("[MASTERING DEBUG] No clips found in timeline")
return "β No clips in timeline", timeline_state
# Log clip details for debugging
for i, clip in enumerate(clips):
logger.info(f"[MASTERING DEBUG] Clip {i+1}: {clip}")
# Extract preset name from dropdown value
preset_key = preset_name.split(" - ")[0].lower().replace(" ", "_")
logger.info(f"Applying preset '{preset_key}' to {len(clips)} clip(s)")
# Import mastering service
from services.mastering_service import MasteringService
mastering_service = MasteringService()
# Apply preset to all clips
for clip in clips:
clip_path = clip['file_path']
if not os.path.exists(clip_path):
logger.warning(f"Audio file not found: {clip_path}")
continue
# Apply preset
mastering_service.apply_preset(
audio_path=clip_path,
preset_name=preset_key,
output_path=clip_path # Overwrite original
)
logger.info(f"Applied preset to: {clip['clip_id']}")
return f"β
Applied '{preset_name.split(' - ')[0]}' to {len(clips)} clip(s)", timeline_state
except Exception as e:
logger.error(f"Error applying preset: {e}", exc_info=True)
return f"β Error: {str(e)}", timeline_state
def preview_custom_eq(low_shelf, low_mid, mid, high_mid, high_shelf, timeline_state: dict):
"""Preview custom EQ on the most recent clip"""
try:
# Restore timeline from state
if timeline_state and 'clips' in timeline_state:
timeline_service.clips = []
for clip_data in timeline_state['clips']:
from models.schemas import TimelineClip
clip = TimelineClip(**clip_data)
timeline_service.clips.append(clip)
clips = timeline_service.get_all_clips()
if not clips:
return None, "β No clips in timeline to preview"
# Use the most recent clip for preview
latest_clip = clips[-1]
clip_path = latest_clip['file_path']
if not os.path.exists(clip_path):
return None, f"β Clip file not found: {clip_path}"
# Create temporary preview file
import tempfile
preview_path = os.path.join(tempfile.gettempdir(), f"eq_preview_{latest_clip['clip_id']}.wav")
from services.mastering_service import MasteringService
mastering_service = MasteringService()
# Format EQ bands
eq_bands = [
{'type': 'lowshelf', 'frequency': 100, 'gain': low_shelf, 'q': 0.7},
{'type': 'peak', 'frequency': 500, 'gain': low_mid, 'q': 1.0},
{'type': 'peak', 'frequency': 2000, 'gain': mid, 'q': 1.0},
{'type': 'peak', 'frequency': 5000, 'gain': high_mid, 'q': 1.0},
{'type': 'highshelf', 'frequency': 10000, 'gain': high_shelf, 'q': 0.7}
]
# Apply EQ to preview file
mastering_service.apply_custom_eq(
audio_path=clip_path,
eq_bands=eq_bands,
output_path=preview_path
)
logger.info(f"Created EQ preview: {preview_path}")
return preview_path, f"β
Preview ready: Custom EQ applied to latest clip"
except Exception as e:
logger.error(f"Error creating EQ preview: {e}", exc_info=True)
return None, f"β Preview error: {str(e)}"
def apply_custom_eq(low_shelf, low_mid, mid, high_mid, high_shelf, timeline_state: dict):
"""Apply custom EQ to all clips in timeline"""
try:
logger.info(f"[STATE DEBUG] apply_custom_eq called")
logger.info(f"[STATE DEBUG] timeline_state type: {type(timeline_state)}")
logger.info(f"[STATE DEBUG] timeline_state value: {timeline_state}")
# Restore timeline from state
if timeline_state and 'clips' in timeline_state:
timeline_service.clips = []
for clip_data in timeline_state['clips']:
from models.schemas import TimelineClip
clip = TimelineClip(**clip_data)
timeline_service.clips.append(clip)
logger.info(f"[STATE] Restored {len(timeline_service.clips)} clips for EQ")
else:
logger.warning(f"[STATE DEBUG] State restoration failed - timeline_state is None or missing 'clips' key")
clips = timeline_service.get_all_clips()
logger.info(f"[EQ DEBUG] Retrieved {len(clips)} clips from timeline")
if not clips:
logger.warning("[EQ DEBUG] No clips found in timeline")
return "β No clips in timeline", timeline_state
# Log clip details for debugging
for i, clip in enumerate(clips):
logger.info(f"[EQ DEBUG] Clip {i+1}: {clip}")
logger.info(f"Applying custom EQ to {len(clips)} clip(s)")
# Import mastering service
from services.mastering_service import MasteringService
mastering_service = MasteringService()
# Apply custom EQ - format eq_bands as expected by the service
eq_bands = [
{'type': 'lowshelf', 'frequency': 100, 'gain': low_shelf, 'q': 0.7},
{'type': 'peak', 'frequency': 500, 'gain': low_mid, 'q': 1.0},
{'type': 'peak', 'frequency': 2000, 'gain': mid, 'q': 1.0},
{'type': 'peak', 'frequency': 5000, 'gain': high_mid, 'q': 1.0},
{'type': 'highshelf', 'frequency': 10000, 'gain': high_shelf, 'q': 0.7}
]
# Apply to all clips
for clip in clips:
clip_path = clip['file_path']
if not os.path.exists(clip_path):
logger.warning(f"Audio file not found: {clip_path}")
continue
mastering_service.apply_custom_eq(
audio_path=clip_path,
eq_bands=eq_bands,
output_path=clip_path # Overwrite original
)
logger.info(f"Applied EQ to: {clip['clip_id']}")
return f"β
Applied custom EQ to {len(clips)} clip(s)", timeline_state
except Exception as e:
logger.error(f"Error applying EQ: {e}", exc_info=True)
return f"β Error: {str(e)}", timeline_state
def format_duration(seconds: float) -> str:
"""Format duration as MM:SS"""
mins = int(seconds // 60)
secs = int(seconds % 60)
return f"{mins}:{secs:02d}"
# Create Gradio interface
with gr.Blocks(
title="π΅ Music Generation Studio",
theme=gr.themes.Soft(primary_hue="purple", secondary_hue="pink")
) as app:
gr.Markdown(
"""
# π΅ Music Generation Studio
Create AI-powered music with DiffRhythm2 and LyricMind AI
π‘ **Tip**: Start with 10-20 second clips for faster generation with ZeroGPU
"""
)
# Timeline state - persists across GPU context switches
timeline_state = gr.State(value={'clips': []})
# Generation Section
gr.Markdown("### πΌ Music Generation")
prompt_input = gr.Textbox(
label="π― Music Prompt",
placeholder="energetic rock song with electric guitar at 140 BPM",
lines=3,
info="Describe the music style, instruments, tempo, and mood"
)
lyrics_mode = gr.Radio(
choices=["Instrumental", "User Lyrics", "Auto Lyrics"],
value="Instrumental",
label="π€ Vocal Mode",
info="Instrumental: no vocals | User: provide lyrics | Auto: AI-generated"
)
with gr.Row():
auto_gen_btn = gr.Button("βοΈ Generate Lyrics", size="sm")
lyrics_input = gr.Textbox(
label="π Lyrics",
placeholder="Enter lyrics or click 'Generate Lyrics'...",
lines=6
)
with gr.Row():
context_length_input = gr.Slider(
minimum=0,
maximum=240,
value=0,
step=10,
label="π¨ Style Context (seconds)",
info="How far back to analyze for style consistency (0 = disabled, auto-disabled for first clip)",
interactive=True
)
position_input = gr.Radio(
choices=["intro", "previous", "next", "outro"],
value="next",
label="π Position",
info="Where to add clip on timeline"
)
gr.Markdown("*All clips are generated at 32 seconds*")
with gr.Row():
generate_btn = gr.Button(
"β¨ Generate Music Clip",
variant="primary",
size="lg"
)
gen_status = gr.Textbox(label="π Status", lines=2, interactive=False)
audio_output = gr.Audio(
label="π§ Preview",
type="filepath",
waveform_options=gr.WaveformOptions(
waveform_color="#9333ea",
waveform_progress_color="#c084fc"
)
)
# Timeline Section
gr.Markdown("---")
gr.Markdown("### π Timeline")
timeline_display = gr.HTML(
value=get_timeline_display()
)
# Playback controls
timeline_playback = gr.Audio(
label="π΅ Timeline Playback",
type="filepath",
interactive=False,
autoplay=False,
waveform_options=gr.WaveformOptions(
waveform_color="#06b6d4",
waveform_progress_color="#22d3ee",
show_controls=True
)
)
with gr.Row():
play_timeline_btn = gr.Button("βΆοΈ Load Timeline for Playback", variant="secondary", scale=2)
clip_number_input = gr.Number(
label="Clip #",
precision=0,
minimum=1,
scale=1
)
remove_btn = gr.Button("ποΈ Remove Clip", size="sm", scale=1)
clear_btn = gr.Button("ποΈ Clear All", variant="stop", scale=1)
timeline_status = gr.Textbox(label="Timeline Status", lines=1, interactive=False)
# Advanced Controls
with gr.Accordion("βοΈ Advanced Audio Mastering", open=False):
gr.Markdown("### Professional Mastering & EQ")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("**Mastering Presets**")
preset_select = gr.Dropdown(
choices=[
"Clean Master - Transparent mastering",
"Subtle Warmth - Gentle low-end enhancement",
"Modern Pop - Radio-ready pop sound",
"Radio Ready - Maximum loudness",
"Punchy Commercial - Aggressive punch",
"Rock Master - Guitar-focused mastering",
"Metal Aggressive - Heavy metal mastering",
"Indie Rock - Lo-fi indie character",
"EDM Club - Electronic dance music",
"House Groovy - House music vibe",
"Techno Dark - Dark techno atmosphere",
"Dubstep Heavy - Heavy bass dubstep",
"HipHop Modern - Modern hip-hop mix",
"Trap 808 - Trap with 808 bass",
"RnB Smooth - Smooth R&B sound",
"Acoustic Natural - Natural acoustic tone",
"Folk Warm - Warm folk sound",
"Jazz Vintage - Vintage jazz character",
"Orchestral Wide - Wide orchestral space",
"Classical Concert - Concert hall sound",
"Ambient Spacious - Spacious atmospheric"
],
value="Clean Master - Transparent mastering",
label="Select Preset"
)
preset_description = gr.Textbox(
label="Description",
value="Transparent mastering with gentle compression",
lines=2,
interactive=False
)
with gr.Row():
preview_preset_btn = gr.Button("π Preview Preset", variant="secondary")
apply_preset_btn = gr.Button("β¨ Apply to Timeline", variant="primary")
preset_preview_audio = gr.Audio(
label="π΅ Preset Preview (Latest Clip)",
type="filepath",
interactive=False,
waveform_options=gr.WaveformOptions(
waveform_color="#9333ea",
waveform_progress_color="#c084fc"
)
)
preset_status = gr.Textbox(label="Status", lines=1, interactive=False)
with gr.Column(scale=1):
gr.Markdown("**Custom EQ**")
gr.Markdown("*5-band parametric EQ. Adjust gain for each frequency band (-12 to +12 dB).*")
# DAW-style vertical sliders in columns
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("<center>**Low**<br>100 Hz</center>")
low_shelf_gain = gr.Slider(
-12, 12, 0, step=0.5,
label="Low (100 Hz)"
)
with gr.Column(scale=1):
gr.Markdown("<center>**Low-Mid**<br>500 Hz</center>")
low_mid_gain = gr.Slider(
-12, 12, 0, step=0.5,
label="Low-Mid (500 Hz)"
)
with gr.Column(scale=1):
gr.Markdown("<center>**Mid**<br>2000 Hz</center>")
mid_gain = gr.Slider(
-12, 12, 0, step=0.5,
label="Mid (2000 Hz)"
)
with gr.Column(scale=1):
gr.Markdown("<center>**High-Mid**<br>5000 Hz</center>")
high_mid_gain = gr.Slider(
-12, 12, 0, step=0.5,
label="High-Mid (5000 Hz)"
)
with gr.Column(scale=1):
gr.Markdown("<center>**High**<br>10k Hz</center>")
high_shelf_gain = gr.Slider(
-12, 12, 0, step=0.5,
label="High (10k Hz)"
)
with gr.Row():
preview_eq_btn = gr.Button("π Preview EQ", variant="secondary")
apply_custom_eq_btn = gr.Button("πΉ Apply to Timeline", variant="primary")
eq_preview_audio = gr.Audio(
label="π΅ EQ Preview (Latest Clip)",
type="filepath",
interactive=False,
waveform_options=gr.WaveformOptions(
waveform_color="#ec4899",
waveform_progress_color="#f9a8d4"
)
)
eq_status = gr.Textbox(label="Status", lines=1, interactive=False)
# Export Section
gr.Markdown("---")
gr.Markdown("### πΎ Export")
with gr.Row():
export_filename = gr.Textbox(
label="Filename",
value="my_song",
scale=2
)
export_format = gr.Dropdown(
choices=["wav", "mp3"],
value="wav",
label="Format",
scale=1
)
export_btn = gr.Button("πΎ Export", variant="primary", scale=1)
export_status = gr.Textbox(label="Status", lines=1, interactive=False)
export_audio = gr.Audio(
label="π₯ Download",
type="filepath",
waveform_options=gr.WaveformOptions(
waveform_color="#10b981",
waveform_progress_color="#34d399"
)
)
# Event handlers
auto_gen_btn.click(
fn=generate_lyrics,
inputs=[prompt_input],
outputs=lyrics_input
)
generate_btn.click(
fn=generate_music,
inputs=[prompt_input, lyrics_input, lyrics_mode, position_input, context_length_input, timeline_state],
outputs=[gen_status, timeline_display, audio_output, timeline_state]
)
remove_btn.click(
fn=remove_clip,
inputs=[clip_number_input, timeline_state],
outputs=[timeline_status, timeline_display, timeline_state]
)
clear_btn.click(
fn=clear_timeline,
inputs=[timeline_state],
outputs=[timeline_status, timeline_display, timeline_state]
)
play_timeline_btn.click(
fn=get_timeline_playback,
inputs=[timeline_state],
outputs=[timeline_playback]
)
export_btn.click(
fn=export_timeline,
inputs=[export_filename, export_format, timeline_state],
outputs=[export_status, export_audio, timeline_state]
)
# Mastering event handlers
preview_preset_btn.click(
fn=preview_mastering_preset,
inputs=[preset_select, timeline_state],
outputs=[preset_preview_audio, preset_status]
)
apply_preset_btn.click(
fn=apply_mastering_preset,
inputs=[preset_select, timeline_state],
outputs=[preset_status, timeline_state]
).then(
fn=get_timeline_playback,
inputs=[timeline_state],
outputs=[timeline_playback]
)
preview_eq_btn.click(
fn=preview_custom_eq,
inputs=[low_shelf_gain, low_mid_gain, mid_gain, high_mid_gain, high_shelf_gain, timeline_state],
outputs=[eq_preview_audio, eq_status]
)
apply_custom_eq_btn.click(
fn=apply_custom_eq,
inputs=[low_shelf_gain, low_mid_gain, mid_gain, high_mid_gain, high_shelf_gain, timeline_state],
outputs=[eq_status, timeline_state]
).then(
fn=get_timeline_playback,
inputs=[timeline_state],
outputs=[timeline_playback]
)
# Help section
with gr.Accordion("βΉοΈ Help & Tips", open=False):
gr.Markdown(
"""
## π Quick Start
1. **Enter a prompt**: "upbeat pop song with synth at 128 BPM"
2. **Choose mode**: Instrumental (fastest) or with vocals
3. **Set duration**: Start with 10-20s for quick results
4. **Generate**: Click the button and wait ~2-4 minutes
5. **Export**: Download your complete song
## β‘ Performance Tips
- **Shorter clips = faster**: 10-20s clips generate in ~1-2 minutes
- **Instrumental mode**: ~30% faster than with vocals
- **HF Spaces uses CPU**: Expect 2-4 minutes per 30s clip
- **Build incrementally**: Generate short clips, then combine
## π― Prompt Tips
- **Be specific**: "energetic rock with distorted guitar" > "rock song"
- **Include BPM**: "at 140 BPM" helps set tempo
- **Mention instruments**: "with piano and drums"
- **Describe mood**: "melancholic", "upbeat", "aggressive"
## π€ Vocal Modes
- **Instrumental**: Pure music, no vocals (fastest)
- **User Lyrics**: Provide your own lyrics
- **Auto Lyrics**: AI generates lyrics based on prompt
## π Timeline
- Clips are arranged sequentially
- Remove or clear clips as needed
- Export combines all clips into one file
---
β±οΈ **Average Generation Time**: 2-4 minutes per 30-second clip on CPU
π΅ **Models**: DiffRhythm2 + MuQ-MuLan + LyricMind AI
"""
)
# Configure and launch
if __name__ == "__main__":
logger.info("π΅ Starting Music Generation Studio on HuggingFace Spaces...")
app.queue(
default_concurrency_limit=1,
max_size=5
)
app.launch()
|