lemm-test-100 / backend /services /lora_training_service.py
Gamahea
Fix missing shutil import in LoRA training service - Adds shutil and zipfile imports for LoRA import/export operations - Fixes NameError when uploading trained LoRAs
c47c661
"""
LoRA Training Service
Handles fine-tuning of DiffRhythm2 model using LoRA adapters for vocal and symbolic music.
"""
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from pathlib import Path
import json
import logging
from typing import Dict, List, Optional, Callable
import soundfile as sf
import numpy as np
import time
import shutil
import zipfile
from datetime import datetime
logger = logging.getLogger(__name__)
class TrainingDataset(Dataset):
"""Dataset for LoRA training"""
def __init__(
self,
audio_files: List[str],
metadata_list: List[Dict],
sample_rate: int = 44100,
clip_length: float = 10.0
):
"""
Initialize training dataset
Args:
audio_files: List of paths to audio files
metadata_list: List of metadata dicts for each audio file
sample_rate: Target sample rate
clip_length: Length of training clips in seconds
"""
self.audio_files = audio_files
self.metadata_list = metadata_list
self.sample_rate = sample_rate
self.clip_length = clip_length
self.clip_samples = int(clip_length * sample_rate)
logger.info(f"Initialized dataset with {len(audio_files)} audio files")
def __len__(self):
return len(self.audio_files)
def __getitem__(self, idx):
"""Get training sample"""
try:
audio_path = self.audio_files[idx]
metadata = self.metadata_list[idx]
# Load audio
y, sr = sf.read(audio_path)
# Resample if needed
if sr != self.sample_rate:
import librosa
y = librosa.resample(y, orig_sr=sr, target_sr=self.sample_rate)
# Ensure mono
if y.ndim > 1:
y = y.mean(axis=1)
# Extract/pad to clip length
if len(y) > self.clip_samples:
# Random crop
start = np.random.randint(0, len(y) - self.clip_samples)
y = y[start:start + self.clip_samples]
else:
# Pad
y = np.pad(y, (0, self.clip_samples - len(y)))
# Generate prompt from metadata
prompt = self._generate_prompt(metadata)
return {
'audio': torch.FloatTensor(y),
'prompt': prompt,
'metadata': metadata
}
except Exception as e:
logger.error(f"Error loading sample {idx}: {str(e)}")
# Return empty sample on error
return {
'audio': torch.zeros(self.clip_samples),
'prompt': "",
'metadata': {}
}
def _generate_prompt(self, metadata: Dict) -> str:
"""Generate text prompt from metadata"""
parts = []
if 'genre' in metadata and metadata['genre'] != 'unknown':
parts.append(metadata['genre'])
if 'instrumentation' in metadata:
parts.append(f"with {metadata['instrumentation']}")
if 'bpm' in metadata:
parts.append(f"at {metadata['bpm']} BPM")
if 'key' in metadata:
parts.append(f"in {metadata['key']}")
if 'mood' in metadata:
parts.append(f"{metadata['mood']} mood")
if 'description' in metadata:
parts.append(metadata['description'])
return " ".join(parts) if parts else "music"
class LoRATrainingService:
"""Service for training LoRA adapters for DiffRhythm2"""
def __init__(self):
"""Initialize LoRA training service"""
self.models_dir = Path("models")
self.lora_dir = self.models_dir / "loras"
self.lora_dir.mkdir(parents=True, exist_ok=True)
self.training_data_dir = Path("training_data")
self.training_data_dir.mkdir(parents=True, exist_ok=True)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# Training state
self.is_training = False
self.current_epoch = 0
self.current_step = 0
self.training_loss = []
self.training_config = None
logger.info(f"LoRATrainingService initialized on {self.device}")
def prepare_dataset(
self,
dataset_name: str,
audio_files: List[str],
metadata_list: List[Dict],
split_ratio: float = 0.9
) -> Dict:
"""
Prepare and save training dataset
Args:
dataset_name: Name for this dataset
audio_files: List of audio file paths
metadata_list: List of metadata for each file
split_ratio: Train/validation split ratio
Returns:
Dataset information dictionary
"""
try:
logger.info(f"Preparing dataset: {dataset_name}")
# Create dataset directory
dataset_dir = self.training_data_dir / dataset_name
dataset_dir.mkdir(parents=True, exist_ok=True)
# Split into train/val
num_samples = len(audio_files)
num_train = int(num_samples * split_ratio)
indices = np.random.permutation(num_samples)
train_indices = indices[:num_train]
val_indices = indices[num_train:]
# Save metadata
dataset_info = {
'name': dataset_name,
'created': datetime.now().isoformat(),
'num_samples': num_samples,
'num_train': num_train,
'num_val': num_samples - num_train,
'train_files': [audio_files[i] for i in train_indices],
'train_metadata': [metadata_list[i] for i in train_indices],
'val_files': [audio_files[i] for i in val_indices],
'val_metadata': [metadata_list[i] for i in val_indices]
}
# Save to disk
metadata_path = dataset_dir / "dataset_info.json"
with open(metadata_path, 'w') as f:
json.dump(dataset_info, f, indent=2)
logger.info(f"Dataset prepared: {num_train} train, {num_samples - num_train} val samples")
return dataset_info
except Exception as e:
logger.error(f"Dataset preparation failed: {str(e)}")
raise
def load_dataset(self, dataset_name: str) -> Optional[Dict]:
"""Load prepared dataset information"""
try:
dataset_dir = self.training_data_dir / dataset_name
metadata_path = dataset_dir / "dataset_info.json"
if not metadata_path.exists():
logger.warning(f"Dataset not found: {dataset_name}")
return None
with open(metadata_path, 'r') as f:
return json.load(f)
except Exception as e:
logger.error(f"Failed to load dataset {dataset_name}: {str(e)}")
return None
def list_datasets(self) -> List[str]:
"""List available prepared datasets"""
try:
datasets = []
for dataset_dir in self.training_data_dir.iterdir():
if dataset_dir.is_dir() and (dataset_dir / "dataset_info.json").exists():
datasets.append(dataset_dir.name)
return datasets
except Exception as e:
logger.error(f"Failed to list datasets: {str(e)}")
return []
def list_loras(self) -> List[str]:
"""List available LoRA adapters"""
try:
loras = []
if not self.lora_dir.exists():
return loras
for lora_path in self.lora_dir.iterdir():
if lora_path.is_dir():
# Check for adapter files
if (lora_path / "adapter_config.json").exists():
loras.append(lora_path.name)
# Also check for .safetensors or .bin files
elif list(lora_path.glob("*.safetensors")) or list(lora_path.glob("*.bin")):
loras.append(lora_path.name)
return sorted(loras)
except Exception as e:
logger.error(f"Failed to list LoRAs: {str(e)}")
return []
def train_lora(
self,
dataset_name: str,
lora_name: str,
training_type: str = "vocal", # "vocal" or "symbolic"
config: Optional[Dict] = None,
progress_callback: Optional[Callable] = None
) -> Dict:
"""
Train LoRA adapter
Args:
dataset_name: Name of prepared dataset
lora_name: Name for the LoRA adapter
training_type: Type of training ("vocal" or "symbolic")
config: Training configuration (batch_size, learning_rate, etc.)
progress_callback: Optional callback for progress updates
Returns:
Training results dictionary
"""
try:
if self.is_training:
raise RuntimeError("Training already in progress")
self.is_training = True
logger.info(f"Starting LoRA training: {lora_name} ({training_type})")
# Load dataset
dataset_info = self.load_dataset(dataset_name)
if not dataset_info:
raise ValueError(f"Dataset not found: {dataset_name}")
# Check if dataset is from HuggingFace and needs preparation
if dataset_info.get('hf_dataset') and not dataset_info.get('prepared'):
raise ValueError(
f"Dataset '{dataset_name}' is a HuggingFace dataset that hasn't been prepared for training yet. "
f"Please use the 'User Audio Training' tab to upload and prepare your own audio files, "
f"or wait for dataset preparation features to be implemented."
)
# Validate dataset has required fields
if 'train_files' not in dataset_info or 'val_files' not in dataset_info:
raise ValueError(
f"Dataset '{dataset_name}' is missing required training files. "
f"Please use prepared datasets or upload your own audio in the 'User Audio Training' tab."
)
# Validate datasets are not empty
if not dataset_info['train_files'] or len(dataset_info['train_files']) == 0:
raise ValueError(
f"Dataset '{dataset_name}' has no training samples. "
f"The dataset may not have been prepared correctly. "
f"Please re-prepare the dataset or use a different one."
)
if not dataset_info['val_files'] or len(dataset_info['val_files']) == 0:
raise ValueError(
f"Dataset '{dataset_name}' has no validation samples. "
f"The dataset may not have been prepared correctly. "
f"Please re-prepare the dataset or use a different one."
)
# Default config
default_config = {
'batch_size': 4,
'learning_rate': 3e-4,
'num_epochs': 10,
'lora_rank': 16,
'lora_alpha': 32,
'warmup_steps': 100,
'save_every': 500,
'gradient_accumulation': 2
}
self.training_config = {**default_config, **(config or {})}
# Create datasets
train_dataset = TrainingDataset(
dataset_info['train_files'],
dataset_info['train_metadata']
)
val_dataset = TrainingDataset(
dataset_info['val_files'],
dataset_info['val_metadata']
)
# Create data loaders
# Disable pin_memory and num_workers for compatibility with ZeroGPU and CPU
# pin_memory requires persistent CUDA access which ZeroGPU doesn't provide at this stage
train_loader = DataLoader(
train_dataset,
batch_size=self.training_config['batch_size'],
shuffle=True,
num_workers=0,
pin_memory=False
)
val_loader = DataLoader(
val_dataset,
batch_size=self.training_config['batch_size'],
shuffle=False,
num_workers=0,
pin_memory=False
)
# Initialize model (placeholder - actual implementation would load DiffRhythm2)
# For now, we'll simulate training
logger.info("Initializing model and LoRA layers...")
# Note: Actual implementation would:
# 1. Load DiffRhythm2 model
# 2. Add LoRA adapters using peft library
# 3. Freeze base model, only train LoRA parameters
# Simulated training loop
num_steps = len(train_loader) * self.training_config['num_epochs']
logger.info(f"Training for {self.training_config['num_epochs']} epochs, {num_steps} total steps")
results = self._training_loop(
train_loader,
val_loader,
lora_name,
progress_callback
)
self.is_training = False
logger.info("Training complete!")
return results
except Exception as e:
self.is_training = False
logger.error(f"Training failed: {str(e)}")
raise
def _training_loop(
self,
train_loader: DataLoader,
val_loader: DataLoader,
lora_name: str,
progress_callback: Optional[Callable]
) -> Dict:
"""
Main training loop
Note: This is a simplified placeholder implementation.
Actual implementation would require:
1. Loading DiffRhythm2 model
2. Setting up LoRA adapters with peft library
3. Implementing proper loss functions
4. Gradient accumulation and optimization
"""
self.current_epoch = 0
self.current_step = 0
self.training_loss = []
best_val_loss = float('inf')
num_epochs = self.training_config['num_epochs']
for epoch in range(num_epochs):
self.current_epoch = epoch + 1
epoch_loss = 0.0
logger.info(f"Epoch {self.current_epoch}/{num_epochs}")
# Training phase
for batch_idx, batch in enumerate(train_loader):
self.current_step += 1
# Simulate training step
# Actual implementation would:
# 1. Move batch to device
# 2. Forward pass through model
# 3. Calculate loss
# 4. Backward pass
# 5. Update weights
# Simulated loss (decreasing over time)
step_loss = 1.0 / (1.0 + self.current_step * 0.01)
epoch_loss += step_loss
self.training_loss.append(step_loss)
# Progress update
if progress_callback and batch_idx % 10 == 0:
progress_callback({
'epoch': self.current_epoch,
'step': self.current_step,
'loss': step_loss,
'progress': (self.current_step / (len(train_loader) * num_epochs)) * 100
})
# Log every 50 steps
if self.current_step % 50 == 0:
logger.info(f"Step {self.current_step}: Loss = {step_loss:.4f}")
# Save checkpoint
if self.current_step % self.training_config['save_every'] == 0:
self._save_checkpoint(lora_name, self.current_step)
# Validation phase
avg_train_loss = epoch_loss / len(train_loader)
val_loss = self._validate(val_loader)
logger.info(f"Epoch {self.current_epoch}: Train Loss = {avg_train_loss:.4f}, Val Loss = {val_loss:.4f}")
# Save best model
if val_loss < best_val_loss:
best_val_loss = val_loss
self._save_lora_adapter(lora_name, is_best=True)
logger.info(f"New best model! Val Loss: {val_loss:.4f}")
# Final save
self._save_lora_adapter(lora_name, is_best=False)
return {
'lora_name': lora_name,
'num_epochs': num_epochs,
'total_steps': self.current_step,
'final_train_loss': avg_train_loss,
'final_val_loss': val_loss,
'best_val_loss': best_val_loss,
'training_time': 'simulated'
}
def _validate(self, val_loader: DataLoader) -> float:
"""Run validation"""
total_loss = 0.0
for batch in val_loader:
# Simulate validation
# Actual implementation would run model inference
val_loss = 1.0 / (1.0 + self.current_step * 0.01)
total_loss += val_loss
return total_loss / len(val_loader)
def _save_checkpoint(self, lora_name: str, step: int):
"""Save training checkpoint"""
checkpoint_dir = self.lora_dir / lora_name / "checkpoints"
checkpoint_dir.mkdir(parents=True, exist_ok=True)
checkpoint_path = checkpoint_dir / f"checkpoint_step_{step}.pt"
# Actual implementation would save:
# - LoRA weights
# - Optimizer state
# - Training step
# - Config
checkpoint_data = {
'step': step,
'epoch': self.current_epoch,
'config': self.training_config,
'loss_history': self.training_loss[-100:] # Last 100 steps
}
torch.save(checkpoint_data, checkpoint_path)
logger.info(f"Saved checkpoint: step_{step}")
def _save_lora_adapter(self, lora_name: str, is_best: bool = False):
"""Save final LoRA adapter"""
lora_path = self.lora_dir / lora_name
lora_path.mkdir(parents=True, exist_ok=True)
filename = "best_model.pt" if is_best else "final_model.pt"
save_path = lora_path / filename
# Actual implementation would save:
# - LoRA adapter weights only
# - Configuration
# - Training metadata
adapter_data = {
'lora_name': lora_name,
'config': self.training_config,
'training_steps': self.current_step,
'saved_at': datetime.now().isoformat()
}
torch.save(adapter_data, save_path)
logger.info(f"Saved LoRA adapter: {filename}")
# Save metadata
metadata_path = lora_path / "metadata.json"
with open(metadata_path, 'w') as f:
json.dump(adapter_data, f, indent=2)
def list_lora_adapters(self) -> List[Dict]:
"""List available LoRA adapters"""
try:
adapters = []
for lora_dir in self.lora_dir.iterdir():
if lora_dir.is_dir():
metadata_path = lora_dir / "metadata.json"
if metadata_path.exists():
with open(metadata_path, 'r') as f:
metadata = json.load(f)
adapters.append({
'name': lora_dir.name,
**metadata
})
else:
# Basic info if no metadata
adapters.append({
'name': lora_dir.name,
'has_best': (lora_dir / "best_model.pt").exists(),
'has_final': (lora_dir / "final_model.pt").exists()
})
return adapters
except Exception as e:
logger.error(f"Failed to list LoRA adapters: {str(e)}")
return []
def delete_lora_adapter(self, lora_name: str) -> bool:
"""Delete a LoRA adapter"""
try:
import shutil
lora_path = self.lora_dir / lora_name
if lora_path.exists():
shutil.rmtree(lora_path)
logger.info(f"Deleted LoRA adapter: {lora_name}")
return True
else:
logger.warning(f"LoRA adapter not found: {lora_name}")
return False
except Exception as e:
logger.error(f"Failed to delete LoRA adapter {lora_name}: {str(e)}")
return False
def stop_training(self):
"""Stop current training"""
if self.is_training:
logger.info("Training stop requested")
self.is_training = False
def get_training_status(self) -> Dict:
"""Get current training status"""
return {
'is_training': self.is_training,
'current_epoch': self.current_epoch,
'current_step': self.current_step,
'recent_loss': self.training_loss[-10:] if self.training_loss else [],
'config': self.training_config
}
def export_lora_adapter(self, lora_name: str) -> Optional[str]:
"""
Export a LoRA adapter as a zip file for download
Args:
lora_name: Name of the LoRA adapter to export
Returns:
Path to the exported zip file, or None if failed
"""
try:
import shutil
import tempfile
lora_path = self.lora_dir / lora_name
if not lora_path.exists():
logger.error(f"LoRA adapter not found: {lora_name}")
return None
# Create exports directory if it doesn't exist
exports_dir = Path("outputs/lora_exports")
exports_dir.mkdir(parents=True, exist_ok=True)
# Create zip file
zip_path = exports_dir / f"{lora_name}.zip"
# Remove existing zip if present
if zip_path.exists():
zip_path.unlink()
# Create zip archive
shutil.make_archive(
str(exports_dir / lora_name),
'zip',
str(lora_path)
)
logger.info(f"Exported LoRA adapter to: {zip_path}")
return str(zip_path)
except Exception as e:
logger.error(f"Failed to export LoRA adapter {lora_name}: {str(e)}")
return None
def import_lora_adapter(self, zip_path: str) -> Optional[str]:
"""
Import a LoRA adapter from a zip file
Args:
zip_path: Path to the zip file containing LoRA adapter
Returns:
Name of the imported LoRA adapter, or None if failed
"""
try:
import zipfile
import tempfile
# Extract to temporary directory first
with tempfile.TemporaryDirectory() as temp_dir:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
temp_path = Path(temp_dir)
# Case 1: Check if metadata.json is at root level
if (temp_path / "metadata.json").exists():
logger.info("Found metadata.json at root level")
source_dir = temp_path
# Read metadata to get LoRA name
with open(temp_path / "metadata.json", 'r') as f:
metadata = json.load(f)
lora_name = metadata.get('lora_name', 'imported_lora')
else:
# Case 2: Look for a subfolder with metadata.json
lora_folders = [d for d in temp_path.iterdir() if d.is_dir() and (d / "metadata.json").exists()]
if not lora_folders:
logger.error("No valid LoRA adapter found in zip file. Expected metadata.json at root or in a subfolder.")
return None
source_dir = lora_folders[0]
lora_name = source_dir.name
logger.info(f"Found LoRA in subfolder: {lora_name}")
# Copy to loras directory
dest_path = self.lora_dir / lora_name
# If already exists, rename with timestamp
if dest_path.exists():
timestamp = int(time.time())
original_name = lora_name
lora_name = f"{lora_name}_{timestamp}"
dest_path = self.lora_dir / lora_name
logger.info(f"LoRA '{original_name}' already exists, importing as '{lora_name}'")
# Create destination directory
dest_path.mkdir(parents=True, exist_ok=True)
# Copy all files from source to destination
for item in source_dir.iterdir():
if item.is_file():
shutil.copy2(item, dest_path / item.name)
elif item.is_dir():
shutil.copytree(item, dest_path / item.name)
logger.info(f"✅ Imported LoRA adapter: {lora_name}")
return lora_name
except Exception as e:
logger.error(f"Failed to import LoRA adapter: {str(e)}", exc_info=True)
return None