Spaces:
Running
on
Zero
Running
on
Zero
Delete corrupted file
Browse files
backend/services/hf_storage_service.py
DELETED
|
@@ -1,359 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
HuggingFace Dataset Repository Storage Service
|
| 3 |
-
Uploads LoRA adapters and datasets as ZIP files to centralized dataset repo
|
| 4 |
-
"""
|
| 5 |
-
import os
|
| 6 |
-
import logging
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
from typing import List, Dict, Optional
|
| 9 |
-
import shutil
|
| 10 |
-
import yaml
|
| 11 |
-
|
| 12 |
-
logger = logging.getLogger(__name__)
|
| 13 |
-
|
| 14 |
-
class HFStorageService:
|
| 15 |
-
"""Service for uploading LoRAs as models to HuggingFace Hub"""
|
| 16 |
-
|
| 17 |
-
def __init__(self, username: str = "Gamahea", dataset_repo: str = "lemmdata"):
|
| 18 |
-
"""
|
| 19 |
-
Initialize HF storage service
|
| 20 |
-
|
| 21 |
-
Args:
|
| 22 |
-
username: HuggingFace username
|
| 23 |
-
dataset_repo: Dataset repository name for storing training artifacts
|
| 24 |
-
"""
|
| 25 |
-
self.username = username
|
| 26 |
-
self.dataset_repo = dataset_repo
|
| 27 |
-
self.repo_id = f"{username}/{dataset_repo}"
|
| 28 |
-
self.local_cache = Path("hf_cache")
|
| 29 |
-
self.local_cache.mkdir(exist_ok=True)
|
| 30 |
-
|
| 31 |
-
logger.info(f"HF Storage initialized for user: {username}")
|
| 32 |
-
logger.info(f"Dataset Repo: https://huggingface.co/datasets/{self.repo_id}")
|
| 33 |
-
|
| 34 |
-
# Get HF token from environment
|
| 35 |
-
self.token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGING_FACE_HUB_TOKEN")
|
| 36 |
-
|
| 37 |
-
# Try to import huggingface_hub
|
| 38 |
-
try:
|
| 39 |
-
from huggingface_hub import HfApi
|
| 40 |
-
self.api = HfApi(token=self.token) if self.token else HfApi()
|
| 41 |
-
self.has_hf = True
|
| 42 |
-
if self.token:
|
| 43 |
-
logger.info("✅ HuggingFace Hub available with authentication")
|
| 44 |
-
else:
|
| 45 |
-
logger.warning("⚠️ HuggingFace Hub available but no token found (uploads may fail)")
|
| 46 |
-
except ImportError:
|
| 47 |
-
logger.warning("⚠️ huggingface_hub not available, uploads will be skipped")
|
| 48 |
-
self.has_hf = False
|
| 49 |
-
|
| 50 |
-
def sync_on_startup(self, loras_dir: Path, datasets_dir: Path = None) -> Dict:
|
| 51 |
-
"""
|
| 52 |
-
Sync LoRAs and datasets from HuggingFace dataset repo on startup
|
| 53 |
-
Downloads missing LoRAs and datasets from the repo to local storage
|
| 54 |
-
|
| 55 |
-
Args:
|
| 56 |
-
loras_dir: Local directory for LoRA storage
|
| 57 |
-
datasets_dir: Local directory for dataset storage (optional)
|
| 58 |
-
|
| 59 |
-
Returns:
|
| 60 |
-
Dict with sync results: {'loras': [...], 'datasets': [...], 'synced': count}
|
| 61 |
-
"""
|
| 62 |
-
if not self.has_hf:
|
| 63 |
-
logger.debug("HF not available, skipping sync")
|
| 64 |
-
return {'loras': [], 'datasets': [], 'synced': 0}
|
| 65 |
-
|
| 66 |
-
try:
|
| 67 |
-
# List LoRAs in dataset repo
|
| 68 |
-
collection_loras = self.list_dataset_loras()
|
| 69 |
-
|
| 70 |
-
if not collection_loras:
|
| 71 |
-
logger.info("No LoRAs found in dataset repo")
|
| 72 |
-
return {'loras': [], 'datasets': [], 'synced': 0}
|
| 73 |
-
|
| 74 |
-
logger.info(f"Found {len(collection_loras)} LoRA(s) in dataset repo")
|
| 75 |
-
|
| 76 |
-
# Check which ones are missing locally
|
| 77 |
-
loras_dir.mkdir(parents=True, exist_ok=True)
|
| 78 |
-
existing_loras = set(d.name for d in loras_dir.iterdir() if d.is_dir())
|
| 79 |
-
|
| 80 |
-
synced_count = 0
|
| 81 |
-
for lora in collection_loras:
|
| 82 |
-
lora_name = lora['name']
|
| 83 |
-
|
| 84 |
-
# Handle name conflicts - add number suffix if needed
|
| 85 |
-
final_name = lora_name
|
| 86 |
-
counter = 1
|
| 87 |
-
while final_name in existing_loras:
|
| 88 |
-
final_name = f"{lora_name}_{counter}"
|
| 89 |
-
counter += 1
|
| 90 |
-
|
| 91 |
-
target_dir = loras_dir / final_name
|
| 92 |
-
|
| 93 |
-
# Download if not present locally
|
| 94 |
-
if not target_dir.exists():
|
| 95 |
-
logger.info(f"Downloading LoRA from dataset repo: {lora['path']}")
|
| 96 |
-
if self.download_lora(lora['path'], target_dir):
|
| 97 |
-
synced_count += 1
|
| 98 |
-
existing_loras.add(final_name)
|
| 99 |
-
if final_name != lora_name:
|
| 100 |
-
logger.info(f"Downloaded as '{final_name}' (name conflict resolved)")
|
| 101 |
-
|
| 102 |
-
logger.info(f"Synced {synced_count} new LoRA(s) from dataset repo")
|
| 103 |
-
return {'loras': collection_loras, 'datasets': [], 'synced': synced_count}
|
| 104 |
-
|
| 105 |
-
except Exception as e:
|
| 106 |
-
logger.error(f"Sync failed: {str(e)}", exc_info=True)
|
| 107 |
-
return {'loras': [], 'datasets': [], 'synced': 0, 'error': str(e)}
|
| 108 |
-
|
| 109 |
-
def list_dataset_loras(self) -> List[Dict[str, str]]:
|
| 110 |
-
"""
|
| 111 |
-
List all LoRA ZIP files stored in the dataset repo
|
| 112 |
-
|
| 113 |
-
Returns:
|
| 114 |
-
List of dicts with 'name' and 'path'
|
| 115 |
-
"""
|
| 116 |
-
if not self.has_hf:
|
| 117 |
-
logger.debug("HF not available, skipping dataset list")
|
| 118 |
-
return []
|
| 119 |
-
|
| 120 |
-
try:
|
| 121 |
-
from huggingface_hub import list_repo_files
|
| 122 |
-
|
| 123 |
-
# List all files in the loras/ folder
|
| 124 |
-
files = list_repo_files(
|
| 125 |
-
repo_id=self.repo_id,
|
| 126 |
-
repo_type="dataset",
|
| 127 |
-
token=self.token
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
# Extract LoRA names from ZIP files in loras/ folder
|
| 131 |
-
loras = []
|
| 132 |
-
for file in files:
|
| 133 |
-
if file.startswith("loras/") and file.endswith(".zip"):
|
| 134 |
-
# Extract name from "loras/name.zip"
|
| 135 |
-
lora_name = file[6:-4] # Remove "loras/" and ".zip"
|
| 136 |
-
loras.append({
|
| 137 |
-
'name': lora_name,
|
| 138 |
-
'path': f"loras/{lora_name}"
|
| 139 |
-
})
|
| 140 |
-
|
| 141 |
-
logger.info(f"Found {len(loras)} LoRA(s) in dataset repo")
|
| 142 |
-
return loras
|
| 143 |
-
|
| 144 |
-
except Exception as e:
|
| 145 |
-
logger.error(f"Failed to list dataset LoRAs: {e}")
|
| 146 |
-
return []
|
| 147 |
-
|
| 148 |
-
def download_lora(self, lora_path: str, target_dir: Path) -> bool:
|
| 149 |
-
"""
|
| 150 |
-
Download a LoRA ZIP file from dataset repo and extract it
|
| 151 |
-
|
| 152 |
-
Args:
|
| 153 |
-
lora_path: Path within dataset repo (e.g., "loras/jazz-v1")
|
| 154 |
-
target_dir: Local directory to extract to
|
| 155 |
-
|
| 156 |
-
Returns:
|
| 157 |
-
True if successful
|
| 158 |
-
"""
|
| 159 |
-
if not self.has_hf:
|
| 160 |
-
logger.debug("HF not available, skipping download")
|
| 161 |
-
return False
|
| 162 |
-
|
| 163 |
-
try:
|
| 164 |
-
from huggingface_hub import hf_hub_download
|
| 165 |
-
import zipfile
|
| 166 |
-
import tempfile
|
| 167 |
-
|
| 168 |
-
# Expect ZIP file
|
| 169 |
-
lora_name = lora_path.split('/')[-1]
|
| 170 |
-
zip_filename = f"loras/{lora_name}.zip"
|
| 171 |
-
|
| 172 |
-
logger.info(f"Downloading LoRA ZIP from {self.repo_id}/{zip_filename}...")
|
| 173 |
-
|
| 174 |
-
# Download ZIP file to temp location
|
| 175 |
-
zip_path = hf_hub_download(
|
| 176 |
-
repo_id=self.repo_id,
|
| 177 |
-
repo_type="dataset",
|
| 178 |
-
filename=zip_filename,
|
| 179 |
-
token=self.token
|
| 180 |
-
)
|
| 181 |
-
|
| 182 |
-
# Extract to target directory
|
| 183 |
-
target_dir.mkdir(parents=True, exist_ok=True)
|
| 184 |
-
|
| 185 |
-
with zipfile.ZipFile(zip_path, 'r') as zipf:
|
| 186 |
-
zipf.extractall(target_dir)
|
| 187 |
-
|
| 188 |
-
logger.info(f"✅ Downloaded and extracted LoRA to {target_dir}")
|
| 189 |
-
return True
|
| 190 |
-
|
| 191 |
-
except Exception as e:
|
| 192 |
-
logger.error(f"Failed to download LoRA: {e}")
|
| 193 |
-
return False
|
| 194 |
-
|
| 195 |
-
def upload_lora(self, lora_dir: Path, training_config: Optional[Dict] = None) -> Optional[Dict]:
|
| 196 |
-
"""
|
| 197 |
-
Upload a LoRA adapter as a ZIP file to HuggingFace dataset repo
|
| 198 |
-
|
| 199 |
-
Args:
|
| 200 |
-
lora_dir: Local LoRA directory
|
| 201 |
-
training_config: Optional training configuration dict
|
| 202 |
-
|
| 203 |
-
Returns:
|
| 204 |
-
Dict with repo_id and url if successful, None otherwise
|
| 205 |
-
"""
|
| 206 |
-
if not self.has_hf:
|
| 207 |
-
logger.info(f"💾 LoRA saved locally: {lora_dir.name}")
|
| 208 |
-
return None
|
| 209 |
-
|
| 210 |
-
if not self.token:
|
| 211 |
-
logger.warning("⚠️ No HuggingFace token found - cannot upload")
|
| 212 |
-
logger.info("💡 To enable uploads: Log in to HuggingFace or set HF_TOKEN environment variable")
|
| 213 |
-
logger.info(f"💾 LoRA saved locally: {lora_dir.name}")
|
| 214 |
-
return None
|
| 215 |
-
|
| 216 |
-
try:
|
| 217 |
-
from huggingface_hub import upload_file
|
| 218 |
-
import zipfile
|
| 219 |
-
import tempfile
|
| 220 |
-
|
| 221 |
-
lora_name = lora_dir.name
|
| 222 |
-
|
| 223 |
-
logger.info(f"📤 Creating ZIP and uploading LoRA to dataset repo: {self.repo_id}/loras/{lora_name}.zip...")
|
| 224 |
-
|
| 225 |
-
# Create README.md for the LoRA
|
| 226 |
-
readme_content = self._generate_lora_readme(lora_name, training_config)
|
| 227 |
-
readme_path = lora_dir / "README.md"
|
| 228 |
-
with open(readme_path, 'w', encoding='utf-8') as f:
|
| 229 |
-
f.write(readme_content)
|
| 230 |
-
|
| 231 |
-
# Create ZIP file
|
| 232 |
-
with tempfile.NamedTemporaryFile(mode='wb', suffix='.zip', delete=False) as tmp_file:
|
| 233 |
-
zip_path = tmp_file.name
|
| 234 |
-
|
| 235 |
-
try:
|
| 236 |
-
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 237 |
-
for file_path in lora_dir.rglob('*'):
|
| 238 |
-
if file_path.is_file():
|
| 239 |
-
arcname = file_path.relative_to(lora_dir)
|
| 240 |
-
zipf.write(file_path, arcname)
|
| 241 |
-
|
| 242 |
-
# Upload ZIP file to loras/ folder in dataset repo
|
| 243 |
-
upload_file(
|
| 244 |
-
repo_id=self.repo_id,
|
| 245 |
-
repo_type="dataset",
|
| 246 |
-
path_or_fileobj=zip_path,
|
| 247 |
-
path_in_repo=f"loras/{lora_name}.zip",
|
| 248 |
-
commit_message=f"Upload LEMM LoRA adapter: {lora_name}",
|
| 249 |
-
token=self.token
|
| 250 |
-
)
|
| 251 |
-
finally:
|
| 252 |
-
# Clean up temp file
|
| 253 |
-
import os
|
| 254 |
-
if os.path.exists(zip_path):
|
| 255 |
-
os.unlink(zip_path)
|
| 256 |
-
|
| 257 |
-
logger.info(f"✅ Uploaded LoRA: {self.repo_id}/loras/{lora_name}.zip")
|
| 258 |
-
logger.info(f"🔗 View at: https://huggingface.co/datasets/{self.repo_id}/blob/main/loras/{lora_name}.zip")
|
| 259 |
-
|
| 260 |
-
return {
|
| 261 |
-
'repo_id': f"{self.repo_id}/loras/{lora_name}.zip",
|
| 262 |
-
'url': f"https://huggingface.co/datasets/{self.repo_id}/blob/main/loras/{lora_name}.zip",
|
| 263 |
-
'dataset_repo': f"https://huggingface.co/datasets/{self.repo_id}"
|
| 264 |
-
}
|
| 265 |
-
|
| 266 |
-
except Exception as e:
|
| 267 |
-
logger.error(f"Failed to upload LoRA: {e}")
|
| 268 |
-
logger.info(f"💾 LoRA saved locally: {lora_dir.name}")
|
| 269 |
-
return None
|
| 270 |
-
|
| 271 |
-
def _generate_lora_readme(self, lora_name: str, config: Optional[Dict] = None) -> str:
|
| 272 |
-
"""Generate README.md content for a LoRA model"""
|
| 273 |
-
|
| 274 |
-
config_info = ""
|
| 275 |
-
if config:
|
| 276 |
-
config_info = f"""
|
| 277 |
-
## Training Configuration
|
| 278 |
-
|
| 279 |
-
- **Dataset**: {config.get('dataset', 'N/A')}
|
| 280 |
-
- **Epochs**: {config.get('epochs', 'N/A')}
|
| 281 |
-
- **Learning Rate**: {config.get('learning_rate', 'N/A')}
|
| 282 |
-
- **Batch Size**: {config.get('batch_size', 'N/A')}
|
| 283 |
-
- **LoRA Rank**: {config.get('lora_rank', 'N/A')}
|
| 284 |
-
"""
|
| 285 |
-
|
| 286 |
-
return f"""---
|
| 287 |
-
license: mit
|
| 288 |
-
tags:
|
| 289 |
-
- lora
|
| 290 |
-
- music-generation
|
| 291 |
-
- diffrhythm2
|
| 292 |
-
- lemm
|
| 293 |
-
library_name: diffusers
|
| 294 |
-
---
|
| 295 |
-
|
| 296 |
-
# LEMM LoRA: {lora_name}
|
| 297 |
-
|
| 298 |
-
This is a LoRA (Low-Rank Adaptation) adapter for DiffRhythm2 music generation, trained using LEMM (Let Everyone Make Music).
|
| 299 |
-
|
| 300 |
-
## About LEMM
|
| 301 |
-
|
| 302 |
-
LEMM is an advanced AI music generation system that allows you to:
|
| 303 |
-
- Generate high-quality music with built-in vocals
|
| 304 |
-
- Train custom LoRA adapters for specific styles
|
| 305 |
-
- Fine-tune models on your own datasets
|
| 306 |
-
|
| 307 |
-
🎵 **Try it**: [LEMM Space](https://huggingface.co/spaces/Gamahea/lemm-test-100)
|
| 308 |
-
{config_info}
|
| 309 |
-
## How to Use
|
| 310 |
-
|
| 311 |
-
### In LEMM Space
|
| 312 |
-
1. Visit [LEMM](https://huggingface.co/spaces/Gamahea/lemm-test-100)
|
| 313 |
-
2. Go to "LoRA Management" tab
|
| 314 |
-
3. Enter this model ID: `{self.username}/lemm-lora-{lora_name}`
|
| 315 |
-
4. Click "Download from Hub"
|
| 316 |
-
5. Use in generation or as base for continued training
|
| 317 |
-
|
| 318 |
-
### In Your Code
|
| 319 |
-
```python
|
| 320 |
-
from pathlib import Path
|
| 321 |
-
from huggingface_hub import snapshot_download
|
| 322 |
-
|
| 323 |
-
# Download LoRA
|
| 324 |
-
lora_path = snapshot_download(
|
| 325 |
-
repo_id="{self.username}/lemm-lora-{lora_name}",
|
| 326 |
-
local_dir="./loras/{lora_name}"
|
| 327 |
-
)
|
| 328 |
-
|
| 329 |
-
# Load and use with DiffRhythm2
|
| 330 |
-
# (See LEMM documentation for integration)
|
| 331 |
-
```
|
| 332 |
-
|
| 333 |
-
## Model Files
|
| 334 |
-
|
| 335 |
-
- `final_model.pt` - Trained LoRA weights
|
| 336 |
-
- `config.yaml` - Training configuration
|
| 337 |
-
- `README.md` - This file
|
| 338 |
-
|
| 339 |
-
## Dataset Repository
|
| 340 |
-
|
| 341 |
-
Part of the [LEMM Training Data Repository](https://huggingface.co/datasets/{self.repo_id})
|
| 342 |
-
|
| 343 |
-
## License
|
| 344 |
-
|
| 345 |
-
MIT License - Free to use and modify
|
| 346 |
-
"""
|
| 347 |
-
|
| 348 |
-
def upload_dataset(self, dataset_dir: Path, dataset_info: Optional[Dict] = None) -> Optional[Dict]:
|
| 349 |
-
"""
|
| 350 |
-
Upload a prepared dataset to HF dataset repo
|
| 351 |
-
|
| 352 |
-
Args:
|
| 353 |
-
dataset_dir: Local dataset directory
|
| 354 |
-
dataset_info: Optional dataset metadata
|
| 355 |
-
|
| 356 |
-
Returns:
|
| 357 |
-
Dict with upload results or None if failed
|
| 358 |
-
\"\"\"\n if not self.has_hf:\n logger.info(f\"💾 Dataset saved locally: {dataset_dir.name}\")\n return None\n \n if not self.token:\n logger.warning(\"⚠️ No HuggingFace token found - cannot upload dataset\")\n logger.info(f\"💾 Dataset saved locally: {dataset_dir.name}\")\n return None\n \n try:\n from huggingface_hub import upload_folder\n \n dataset_name = dataset_dir.name\n \n logger.info(f\"📤 Uploading dataset to repo: {self.repo_id}/datasets/{dataset_name}...\")\n \n # Upload to datasets/ folder in dataset repo\n upload_folder(\n repo_id=self.repo_id,\n repo_type=\"dataset\",\n folder_path=str(dataset_dir),\n path_in_repo=f\"datasets/{dataset_name}\",\n commit_message=f\"Upload prepared dataset: {dataset_name}\",\n token=self.token\n )\n \n logger.info(f\"✅ Uploaded dataset: {self.repo_id}/datasets/{dataset_name}\")\n \n return {\n 'repo_id': f\"{self.repo_id}/datasets/{dataset_name}\",\n 'url': f\"https://huggingface.co/datasets/{self.repo_id}/tree/main/datasets/{dataset_name}\",\n 'dataset_repo': f\"https://huggingface.co/datasets/{self.repo_id}\"\n }\n \n except Exception as e:\n logger.error(f\"Failed to upload dataset: {e}\")\n logger.info(f\"💾 Dataset saved locally: {dataset_dir.name}\")\n return None
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|