Spaces:
Sleeping
Sleeping
Add ZeroGPU authentication requirements
Browse files
README.md
CHANGED
|
@@ -1,447 +1,79 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji: π΅
|
| 4 |
-
colorFrom: purple
|
| 5 |
-
colorTo: pink
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: mit
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
-
|
| 30 |
-
-
|
| 31 |
-
-
|
| 32 |
-
- **
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
-
|
| 51 |
-
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
-
|
| 67 |
-
-
|
| 68 |
-
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
-
|
| 74 |
-
-
|
| 75 |
-
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
# Clone the repository
|
| 81 |
-
git clone https://github.com/lemm-ai/LEMM-1.0.0-ALPHA.git
|
| 82 |
-
cd LEMM-1.0.0-ALPHA
|
| 83 |
-
|
| 84 |
-
# Create virtual environment
|
| 85 |
-
python -m venv .venv
|
| 86 |
-
|
| 87 |
-
# Activate virtual environment
|
| 88 |
-
# Windows:
|
| 89 |
-
.\.venv\Scripts\activate
|
| 90 |
-
# Linux/Mac:
|
| 91 |
-
source .venv/bin/activate
|
| 92 |
-
|
| 93 |
-
# Install dependencies
|
| 94 |
-
pip install -r requirements.txt
|
| 95 |
-
|
| 96 |
-
# Launch LEMM
|
| 97 |
-
python app.py
|
| 98 |
-
```
|
| 99 |
-
|
| 100 |
-
**Access at**: http://localhost:7860
|
| 101 |
-
|
| 102 |
-
---
|
| 103 |
-
|
| 104 |
-
## π Usage Guide
|
| 105 |
-
|
| 106 |
-
### 1οΈβ£ Generate Your First Track
|
| 107 |
-
|
| 108 |
-
1. **Enter Music Prompt**: Describe the style
|
| 109 |
-
- Example: *"upbeat electronic dance music with heavy bass"*
|
| 110 |
-
2. **Add Lyrics** (optional): DiffRhythm2 will sing them
|
| 111 |
-
- Leave empty for instrumental
|
| 112 |
-
3. **Set Duration**: 10-120 seconds (default: 30s)
|
| 113 |
-
4. **Generate**: Click "β¨ Generate Music Clip"
|
| 114 |
-
5. **Preview**: Listen in the audio player
|
| 115 |
-
|
| 116 |
-
### 2οΈβ£ Build Your Composition
|
| 117 |
-
|
| 118 |
-
1. **Timeline Tab**: View all generated clips
|
| 119 |
-
2. **Waveform Preview**: Visual representation of each clip
|
| 120 |
-
3. **Add More**: Generate additional clips at different positions
|
| 121 |
-
4. **Style Consistency**: New clips automatically match existing style
|
| 122 |
-
|
| 123 |
-
### 3οΈβ£ Master & Export
|
| 124 |
-
|
| 125 |
-
1. **Mastering Tab**:
|
| 126 |
-
- Choose preset (Pop, Rock, EDM, etc.)
|
| 127 |
-
- Or customize: EQ, compression, limiting
|
| 128 |
-
2. **Enhancement** (optional):
|
| 129 |
-
- Stem separation
|
| 130 |
-
- Noise reduction
|
| 131 |
-
- Audio super resolution
|
| 132 |
-
3. **Export Tab**:
|
| 133 |
-
- Choose format (WAV, MP3, FLAC)
|
| 134 |
-
- Download your finished track
|
| 135 |
-
|
| 136 |
-
### 4οΈβ£ Train Custom LoRAs
|
| 137 |
-
|
| 138 |
-
1. **Dataset Management Tab**:
|
| 139 |
-
- Select public dataset (GTZAN, MusicCaps, FMA)
|
| 140 |
-
- Or upload your own music
|
| 141 |
-
- Download and prepare dataset
|
| 142 |
-
2. **Training Configuration Tab**:
|
| 143 |
-
- Name your LoRA
|
| 144 |
-
- Set training parameters
|
| 145 |
-
- Choose base LoRA (optional - for continued training)
|
| 146 |
-
- Start training
|
| 147 |
-
3. **Wait for Training**: Progress shown in real-time
|
| 148 |
-
4. **Auto-Upload**: LoRA uploaded to HuggingFace as model
|
| 149 |
-
5. **Reuse**: Download and use in future generations
|
| 150 |
-
|
| 151 |
-
---
|
| 152 |
-
|
| 153 |
-
## ποΈ Architecture
|
| 154 |
-
|
| 155 |
-
### Core Technology
|
| 156 |
-
|
| 157 |
-
**DiffRhythm2** (ASLP-lab)
|
| 158 |
-
- State-of-the-art music generation with vocals
|
| 159 |
-
- Continuous Flow Matching (CFM) diffusion
|
| 160 |
-
- MuQ-MuLan style encoding for consistency
|
| 161 |
-
- Native vocal generation (no separate TTS)
|
| 162 |
-
|
| 163 |
-
**LoRA Fine-Tuning** (PEFT)
|
| 164 |
-
- Low-Rank Adaptation for efficient training
|
| 165 |
-
- Parameter-efficient fine-tuning
|
| 166 |
-
- Custom style specialization
|
| 167 |
-
- Continued training support
|
| 168 |
-
|
| 169 |
-
### System Components
|
| 170 |
-
|
| 171 |
-
```
|
| 172 |
-
LEMM/
|
| 173 |
-
βββ app.py # Main Gradio interface
|
| 174 |
-
βββ backend/
|
| 175 |
-
β βββ services/
|
| 176 |
-
β β βββ diffrhythm_service.py # DiffRhythm2 integration
|
| 177 |
-
β οΏ½οΏ½οΏ½ βββ lora_training_service.py # LoRA training
|
| 178 |
-
β β βββ dataset_service.py # Dataset management
|
| 179 |
-
β β βββ mastering_service.py # Audio mastering
|
| 180 |
-
β β βββ stem_enhancement_service.py # Audio enhancement
|
| 181 |
-
β β βββ audio_upscale_service.py # Super resolution
|
| 182 |
-
β β βββ hf_storage_service.py # HuggingFace uploads
|
| 183 |
-
β β βββ ...
|
| 184 |
-
β βββ routes/ # API endpoints
|
| 185 |
-
β βββ models/ # Data schemas
|
| 186 |
-
β βββ config/ # Configuration
|
| 187 |
-
βββ models/
|
| 188 |
-
β βββ diffrhythm2/ # Music generation model
|
| 189 |
-
β βββ loras/ # Trained LoRA adapters
|
| 190 |
-
β βββ ...
|
| 191 |
-
βββ training_data/ # Prepared datasets
|
| 192 |
-
βββ outputs/ # Generated music
|
| 193 |
-
βββ requirements.txt # Dependencies
|
| 194 |
-
```
|
| 195 |
-
|
| 196 |
-
### Key Dependencies
|
| 197 |
-
|
| 198 |
-
- **torch**: 2.4.0+ (PyTorch)
|
| 199 |
-
- **diffusers**: Diffusion models
|
| 200 |
-
- **transformers**: 4.47.1 (HuggingFace)
|
| 201 |
-
- **peft**: LoRA training
|
| 202 |
-
- **gradio**: Web interface
|
| 203 |
-
- **pedalboard**: Audio mastering
|
| 204 |
-
- **demucs**: Stem separation
|
| 205 |
-
- **huggingface-hub**: Model uploads
|
| 206 |
-
|
| 207 |
-
---
|
| 208 |
-
|
| 209 |
-
## π Training Your Own LoRAs
|
| 210 |
-
|
| 211 |
-
### Supported Datasets
|
| 212 |
-
|
| 213 |
-
**Public Datasets:**
|
| 214 |
-
- **GTZAN**: Music genre classification (1,000 tracks, 10 genres)
|
| 215 |
-
- **MusicCaps**: Google's music captioning dataset
|
| 216 |
-
- **FMA (Free Music Archive)**: Large-scale music collection
|
| 217 |
-
|
| 218 |
-
**Custom Datasets:**
|
| 219 |
-
- Upload your own music collections
|
| 220 |
-
- Supports MP3, WAV, FLAC, OGG
|
| 221 |
-
|
| 222 |
-
### Training Process
|
| 223 |
-
|
| 224 |
-
1. **Prepare Dataset**:
|
| 225 |
-
- Download or upload music
|
| 226 |
-
- Extract audio samples
|
| 227 |
-
- Split into train/validation sets
|
| 228 |
-
|
| 229 |
-
2. **Configure Training**:
|
| 230 |
-
- **LoRA Rank**: 4-64 (higher = more expressive, slower)
|
| 231 |
-
- **Learning Rate**: 1e-4 to 1e-3
|
| 232 |
-
- **Batch Size**: 1-8 (depends on GPU memory)
|
| 233 |
-
- **Epochs**: 10-100 (depends on dataset size)
|
| 234 |
-
- **Base LoRA**: Optional - continue from existing model
|
| 235 |
-
|
| 236 |
-
3. **Monitor Training**:
|
| 237 |
-
- Real-time loss graphs
|
| 238 |
-
- Validation metrics
|
| 239 |
-
- Progress percentage
|
| 240 |
-
|
| 241 |
-
4. **Upload & Share**:
|
| 242 |
-
- Automatic upload to HuggingFace Hub
|
| 243 |
-
- Model ID: `Gamahea/lemm-lora-{your-name}`
|
| 244 |
-
- Add to [LEMM Collection](https://huggingface.co/collections/Gamahea/lemm-100-pre-beta)
|
| 245 |
-
|
| 246 |
-
### Example: Training on GTZAN
|
| 247 |
-
|
| 248 |
-
```
|
| 249 |
-
1. Dataset Management β Select GTZAN β Download
|
| 250 |
-
2. Prepare Dataset β GTZAN β Prepare (800 train, 200 val)
|
| 251 |
-
3. Training Configuration:
|
| 252 |
-
- Name: "my_jazz_lora"
|
| 253 |
-
- Dataset: gtzan
|
| 254 |
-
- Epochs: 50
|
| 255 |
-
- LoRA Rank: 8
|
| 256 |
-
- Learning Rate: 1e-4
|
| 257 |
-
4. Start Training β Wait ~2-4 hours (GPU dependent)
|
| 258 |
-
5. β
Uploaded: Gamahea/lemm-lora-my-jazz-lora
|
| 259 |
-
6. Reuse in generation or continue training
|
| 260 |
-
```
|
| 261 |
-
|
| 262 |
-
---
|
| 263 |
-
|
| 264 |
-
## π¨ LoRA Management
|
| 265 |
-
|
| 266 |
-
### Download from HuggingFace
|
| 267 |
-
|
| 268 |
-
1. Go to **LoRA Management Tab**
|
| 269 |
-
2. Enter model ID: `Gamahea/lemm-lora-{name}`
|
| 270 |
-
3. Click "Download from Hub"
|
| 271 |
-
4. Use immediately in generation
|
| 272 |
-
|
| 273 |
-
### Browse Collection
|
| 274 |
-
|
| 275 |
-
π [LEMM LoRA Collection](https://huggingface.co/collections/Gamahea/lemm-100-pre-beta)
|
| 276 |
-
|
| 277 |
-
Discover community-trained LoRAs:
|
| 278 |
-
- Genre specialists (jazz, rock, electronic)
|
| 279 |
-
- Style adaptations
|
| 280 |
-
- Custom fine-tuned models
|
| 281 |
-
|
| 282 |
-
### Export/Import
|
| 283 |
-
|
| 284 |
-
**Export:**
|
| 285 |
-
- Download trained LoRA as ZIP
|
| 286 |
-
- Share with others
|
| 287 |
-
- Backup your work
|
| 288 |
-
|
| 289 |
-
**Import:**
|
| 290 |
-
- Upload LoRA ZIP file
|
| 291 |
-
- Instantly available for use
|
| 292 |
-
- Continue training from checkpoint
|
| 293 |
-
|
| 294 |
-
---
|
| 295 |
-
|
| 296 |
-
## π§ Advanced Configuration
|
| 297 |
-
|
| 298 |
-
### GPU Acceleration
|
| 299 |
-
|
| 300 |
-
**NVIDIA (Recommended):**
|
| 301 |
-
```bash
|
| 302 |
-
# CUDA 12.x automatically detected
|
| 303 |
-
# No additional configuration needed
|
| 304 |
-
```
|
| 305 |
-
|
| 306 |
-
**CPU Mode:**
|
| 307 |
-
```bash
|
| 308 |
-
# Automatic fallback if no GPU detected
|
| 309 |
-
# Slower but fully functional
|
| 310 |
-
```
|
| 311 |
-
|
| 312 |
-
### Model Paths
|
| 313 |
-
|
| 314 |
-
Models downloaded to:
|
| 315 |
-
- DiffRhythm2: `models/diffrhythm2/`
|
| 316 |
-
- LoRAs: `models/loras/`
|
| 317 |
-
- Training data: `training_data/`
|
| 318 |
-
|
| 319 |
-
### Environment Variables
|
| 320 |
-
|
| 321 |
-
Create `.env` file:
|
| 322 |
-
```env
|
| 323 |
-
# HuggingFace token for uploads (optional)
|
| 324 |
-
HF_TOKEN=hf_xxxxxxxxxxxxx
|
| 325 |
-
|
| 326 |
-
# Gradio server port (default: 7860)
|
| 327 |
-
GRADIO_SERVER_PORT=7860
|
| 328 |
-
|
| 329 |
-
# Enable debug logging
|
| 330 |
-
DEBUG=false
|
| 331 |
-
```
|
| 332 |
-
|
| 333 |
-
---
|
| 334 |
-
|
| 335 |
-
## π Technical Specifications
|
| 336 |
-
|
| 337 |
-
### Generation
|
| 338 |
-
|
| 339 |
-
- **Model**: DiffRhythm2 (CFM-based diffusion)
|
| 340 |
-
- **Sampling**: 22050 Hz (can upscale to 48kHz)
|
| 341 |
-
- **Duration**: 10-120 seconds per clip
|
| 342 |
-
- **Vocals**: Built-in (no separate TTS)
|
| 343 |
-
- **Style Encoding**: MuQ-MuLan
|
| 344 |
-
|
| 345 |
-
### Training
|
| 346 |
-
|
| 347 |
-
- **Method**: LoRA (Low-Rank Adaptation)
|
| 348 |
-
- **Rank**: 4-64 (configurable)
|
| 349 |
-
- **Precision**: Mixed (FP16/FP32)
|
| 350 |
-
- **Optimizer**: AdamW
|
| 351 |
-
- **Scheduler**: Cosine annealing
|
| 352 |
-
|
| 353 |
-
### Audio Enhancement
|
| 354 |
-
|
| 355 |
-
- **Stem Separation**: Demucs 4.0.1 (4-stem)
|
| 356 |
-
- **Noise Reduction**: Spectral subtraction
|
| 357 |
-
- **Super Resolution**: AudioSR (up to 48kHz)
|
| 358 |
-
- **Mastering**: Pedalboard (Spotify LUFS-compliant)
|
| 359 |
-
|
| 360 |
-
---
|
| 361 |
-
|
| 362 |
-
## π€ Contributing
|
| 363 |
-
|
| 364 |
-
We welcome contributions! Here's how:
|
| 365 |
-
|
| 366 |
-
### Report Issues
|
| 367 |
-
|
| 368 |
-
- [GitHub Issues](https://github.com/lemm-ai/LEMM-1.0.0-ALPHA/issues)
|
| 369 |
-
- Include: steps to reproduce, logs, system info
|
| 370 |
-
|
| 371 |
-
### Share LoRAs
|
| 372 |
-
|
| 373 |
-
1. Train custom LoRA in LEMM
|
| 374 |
-
2. Upload to HuggingFace (automatic)
|
| 375 |
-
3. Add to [Collection](https://huggingface.co/collections/Gamahea/lemm-100-pre-beta)
|
| 376 |
-
4. Share with community
|
| 377 |
-
|
| 378 |
-
### Development
|
| 379 |
-
|
| 380 |
-
```bash
|
| 381 |
-
# Fork the repository
|
| 382 |
-
# Clone your fork
|
| 383 |
-
git clone https://github.com/YOUR-USERNAME/LEMM-1.0.0-ALPHA.git
|
| 384 |
-
|
| 385 |
-
# Create feature branch
|
| 386 |
-
git checkout -b feature/your-feature
|
| 387 |
-
|
| 388 |
-
# Make changes and commit
|
| 389 |
-
git commit -am "Add your feature"
|
| 390 |
-
|
| 391 |
-
# Push and create PR
|
| 392 |
-
git push origin feature/your-feature
|
| 393 |
-
```
|
| 394 |
-
|
| 395 |
-
---
|
| 396 |
-
|
| 397 |
-
## π License
|
| 398 |
-
|
| 399 |
-
**MIT License** - See [LICENSE](LICENSE) file
|
| 400 |
-
|
| 401 |
-
Free to use, modify, and distribute.
|
| 402 |
-
|
| 403 |
-
---
|
| 404 |
-
|
| 405 |
-
## π Acknowledgments
|
| 406 |
-
|
| 407 |
-
### Models & Technologies
|
| 408 |
-
|
| 409 |
-
- **DiffRhythm2**: ASLP-lab for state-of-the-art music generation
|
| 410 |
-
- **LoRA/PEFT**: HuggingFace for parameter-efficient fine-tuning
|
| 411 |
-
- **Gradio**: For the beautiful web interface
|
| 412 |
-
- **Demucs**: Meta AI for stem separation
|
| 413 |
-
- **Pedalboard**: Spotify for professional audio processing
|
| 414 |
-
|
| 415 |
-
### Datasets
|
| 416 |
-
|
| 417 |
-
- **GTZAN**: Music genre classification dataset
|
| 418 |
-
- **MusicCaps**: Google's music captioning dataset
|
| 419 |
-
- **FMA**: Free Music Archive community
|
| 420 |
-
|
| 421 |
-
---
|
| 422 |
-
|
| 423 |
-
## π Support & Community
|
| 424 |
-
|
| 425 |
-
- **Documentation**: [Full Docs](https://github.com/lemm-ai/LEMM-1.0.0-ALPHA/wiki)
|
| 426 |
-
- **HuggingFace Space**: [Try Now](https://huggingface.co/spaces/Gamahea/lemm-test-100)
|
| 427 |
-
- **LoRA Collection**: [Browse Models](https://huggingface.co/collections/Gamahea/lemm-100-pre-beta)
|
| 428 |
-
- **Issues**: [GitHub Issues](https://github.com/lemm-ai/LEMM-1.0.0-ALPHA/issues)
|
| 429 |
-
|
| 430 |
-
---
|
| 431 |
-
|
| 432 |
-
## π What's Next
|
| 433 |
-
|
| 434 |
-
**Planned Features:**
|
| 435 |
-
- Multi-track composition tools
|
| 436 |
-
- Real-time style transfer
|
| 437 |
-
- Collaborative projects
|
| 438 |
-
- Mobile app
|
| 439 |
-
- VST plugin support
|
| 440 |
-
|
| 441 |
-
**Join the Journey!**
|
| 442 |
-
|
| 443 |
-
Built with β€οΈ by the LEMM community
|
| 444 |
-
|
| 445 |
-
---
|
| 446 |
-
|
| 447 |
-
**LEMM - Let Everyone Make Music** π΅
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Music Generation Studio
|
| 3 |
+
emoji: π΅
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# π΅ Music Generation Studio
|
| 14 |
+
|
| 15 |
+
Create AI-powered music with intelligent prompt analysis and context-aware generation using DiffRhythm2 and LyricMind AI.
|
| 16 |
+
|
| 17 |
+
**β οΈ Important:**
|
| 18 |
+
- This Space requires ZeroGPU to run
|
| 19 |
+
- **You must be logged in** to HuggingFace to use GPU features
|
| 20 |
+
- Free users get daily ZeroGPU quota - check your usage at https://huggingface.co/settings/billing
|
| 21 |
+
- If you see quota errors while logged in, try duplicating this Space to your account
|
| 22 |
+
|
| 23 |
+
## Features
|
| 24 |
+
|
| 25 |
+
- **Intelligent Music Generation**: DiffRhythm2 model for high-quality music with vocals
|
| 26 |
+
- **Smart Lyrics Generation**: LyricMind AI for context-aware lyric creation
|
| 27 |
+
- **Prompt Analysis**: Automatically detects genre, BPM, and mood from your description
|
| 28 |
+
- **Flexible Vocal Modes**:
|
| 29 |
+
- Instrumental: Pure music without vocals
|
| 30 |
+
- User Lyrics: Provide your own lyrics
|
| 31 |
+
- Auto Lyrics: AI-generated lyrics based on prompt
|
| 32 |
+
- **Timeline Management**: Build complete songs clip-by-clip
|
| 33 |
+
- **Export**: Download your creations in WAV, MP3, or FLAC formats
|
| 34 |
+
|
| 35 |
+
## How to Use
|
| 36 |
+
|
| 37 |
+
1. **Generate Music**:
|
| 38 |
+
- Enter a descriptive prompt (e.g., "energetic rock song with electric guitar at 140 BPM")
|
| 39 |
+
- Choose vocal mode (Instrumental, User Lyrics, or Auto Lyrics)
|
| 40 |
+
- Set duration (10-120 seconds)
|
| 41 |
+
- Click "Generate Music Clip"
|
| 42 |
+
|
| 43 |
+
2. **Manage Timeline**:
|
| 44 |
+
- View all generated clips in the timeline
|
| 45 |
+
- Remove specific clips or clear all
|
| 46 |
+
- Clips are arranged sequentially
|
| 47 |
+
|
| 48 |
+
3. **Export**:
|
| 49 |
+
- Enter a filename
|
| 50 |
+
- Choose format (WAV recommended for best quality)
|
| 51 |
+
- Download your complete song
|
| 52 |
+
|
| 53 |
+
## Models
|
| 54 |
+
|
| 55 |
+
- **DiffRhythm2**: Music generation with integrated vocals ([ASLP-lab/DiffRhythm2](https://huggingface.co/ASLP-lab/DiffRhythm2))
|
| 56 |
+
- **MuQ-MuLan**: Music style encoding ([OpenMuQ/MuQ-MuLan-large](https://huggingface.co/OpenMuQ/MuQ-MuLan-large))
|
| 57 |
+
|
| 58 |
+
## Performance
|
| 59 |
+
|
| 60 |
+
β±οΈ Generation time: ~2-4 minutes per 30-second clip on CPU (HuggingFace Spaces free tier)
|
| 61 |
+
|
| 62 |
+
π‘ Tip: Start with shorter durations (10-20 seconds) for faster results
|
| 63 |
+
|
| 64 |
+
## Technical Details
|
| 65 |
+
|
| 66 |
+
- Built with Gradio and PyTorch
|
| 67 |
+
- Uses DiffRhythm2 for music generation with vocals
|
| 68 |
+
- Employs flow-matching techniques for high-quality audio synthesis
|
| 69 |
+
- Supports multiple languages for lyrics (English, Chinese, Japanese)
|
| 70 |
+
|
| 71 |
+
## Credits
|
| 72 |
+
|
| 73 |
+
- DiffRhythm2 by ASLP-lab
|
| 74 |
+
- MuQ-MuLan by OpenMuQ
|
| 75 |
+
- Application interface and integration by Music Generation App Team
|
| 76 |
+
|
| 77 |
+
## License
|
| 78 |
+
|
| 79 |
+
MIT License - See LICENSE file for details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|