""" Dataset download and preparation service Downloads curated datasets from HuggingFace for LoRA training """ import os import logging from pathlib import Path from typing import List, Dict, Optional, Callable import json from datetime import datetime logger = logging.getLogger(__name__) class DatasetService: """Service for downloading and preparing training datasets""" # Dataset configurations (Parquet format only - no loading scripts) DATASETS = { 'gtzan': { 'name': 'GTZAN Music Genre Dataset', 'type': 'music', 'hf_id': 'lewtun/music_genres_small', 'description': 'Music genre classification dataset (GTZAN-based)', 'size_gb': 1.2 }, 'fsd50k': { 'name': 'FSD50K Sound Events', 'type': 'sound_effects', 'hf_id': 'nguyenvulebinh/fsd50k', 'description': 'Freesound Dataset with 51K audio clips and 200 sound classes', 'size_gb': 30.0 }, 'librispeech': { 'name': 'LibriSpeech ASR', 'type': 'vocal', 'hf_id': 'openslr/librispeech_asr', 'description': 'LibriSpeech corpus for speech recognition', 'size_gb': 60.0 }, 'libritts': { 'name': 'LibriTTS', 'type': 'vocal', 'hf_id': 'cdminix/libritts-aligned', 'description': 'Multi-speaker English audiobook corpus for TTS', 'size_gb': 35.0 }, 'audioset_strong': { 'name': 'AudioSet Strong', 'type': 'music', 'hf_id': 'agkphysics/AudioSet', 'description': 'High-quality labeled audio events', 'size_gb': 12.0 }, 'esc50': { 'name': 'ESC-50 Environmental Sounds', 'type': 'sound_effects', 'hf_id': 'ashraq/esc50', 'description': 'Environmental sound classification with 2,000 recordings', 'size_gb': 0.6 }, 'urbansound8k': { 'name': 'UrbanSound8K', 'type': 'sound_effects', 'hf_id': 'danavery/urbansound8K', 'description': 'Urban sound classification - 8,732 labeled sound excerpts', 'size_gb': 5.6 } } def __init__(self, base_dir: str = "training_data"): """ Initialize dataset service Args: base_dir: Base directory for storing datasets """ self.base_dir = Path(base_dir) self.base_dir.mkdir(parents=True, exist_ok=True) def import_prepared_dataset(self, zip_path: str) -> Optional[str]: """ Import a prepared dataset from a ZIP file Args: zip_path: Path to the ZIP file containing dataset Returns: Dataset key if successful, None otherwise """ try: import zipfile import tempfile # Extract to temporary directory with tempfile.TemporaryDirectory() as temp_dir: with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall(temp_dir) temp_path = Path(temp_dir) # Look for dataset_info.json (at root or in subfolder) dataset_info_file = None if (temp_path / "dataset_info.json").exists(): dataset_info_file = temp_path / "dataset_info.json" else: # Check subfolders for subfolder in temp_path.iterdir(): if subfolder.is_dir() and (subfolder / "dataset_info.json").exists(): dataset_info_file = subfolder / "dataset_info.json" temp_path = subfolder break if not dataset_info_file: logger.error("No dataset_info.json found in ZIP file") return None # Read dataset info with open(dataset_info_file, 'r') as f: dataset_info = json.load(f) dataset_key = dataset_info.get('dataset_key', 'imported_dataset') # Check if dataset already exists, add number suffix if needed dest_path = self.base_dir / dataset_key counter = 1 original_key = dataset_key while dest_path.exists(): dataset_key = f"{original_key}_{counter}" dest_path = self.base_dir / dataset_key counter += 1 if dataset_key != original_key: logger.info(f"Dataset '{original_key}' exists, importing as '{dataset_key}'") dataset_info['dataset_key'] = dataset_key # Copy entire dataset directory import shutil shutil.copytree(temp_path, dest_path) # Update dataset_info.json with new key if renamed if dataset_key != original_key: with open(dest_path / "dataset_info.json", 'w') as f: json.dump(dataset_info, f, indent=2) logger.info(f"✅ Imported dataset: {dataset_key}") return dataset_key except Exception as e: logger.error(f"Failed to import dataset: {str(e)}", exc_info=True) return None def is_dataset_downloaded(self, dataset_key: str) -> bool: """ Check if a dataset has already been downloaded Args: dataset_key: Key identifying the dataset Returns: True if dataset exists and has metadata file, False otherwise """ dataset_dir = self.base_dir / dataset_key metadata_path = dataset_dir / 'dataset_info.json' return metadata_path.exists() def get_downloaded_datasets(self) -> Dict[str, Dict]: """ Get information about all downloaded datasets Returns: Dictionary mapping dataset keys to their metadata """ downloaded = {} for dataset_key in self.DATASETS.keys(): if self.is_dataset_downloaded(dataset_key): dataset_dir = self.base_dir / dataset_key metadata_path = dataset_dir / 'dataset_info.json' try: with open(metadata_path, 'r') as f: info = json.load(f) downloaded[dataset_key] = info except Exception as e: logger.warning(f"Failed to load metadata for {dataset_key}: {e}") return downloaded def get_user_datasets(self) -> Dict[str, Dict]: """Get information about user-uploaded/prepared datasets Returns: Dictionary mapping user dataset names to their metadata """ user_datasets = {} # Scan training_data directory for user datasets (prefixed with 'user_') if not self.base_dir.exists(): return user_datasets for dataset_dir in self.base_dir.iterdir(): if not dataset_dir.is_dir(): continue dataset_key = dataset_dir.name # Skip HuggingFace datasets (they're in DATASETS dict) if dataset_key in self.DATASETS: continue # Check for dataset_info.json or metadata indicating it's a user dataset metadata_path = dataset_dir / 'dataset_info.json' if metadata_path.exists(): try: with open(metadata_path, 'r') as f: info = json.load(f) # Mark as user dataset info['is_user_dataset'] = True info['dataset_key'] = dataset_key user_datasets[dataset_key] = info except Exception as e: logger.warning(f"Failed to load metadata for user dataset {dataset_key}: {e}") return user_datasets def get_all_available_datasets(self) -> Dict[str, Dict]: """Get all available datasets (both HuggingFace and user-uploaded) Returns: Dictionary mapping all dataset keys to their metadata """ all_datasets = {} # Get HuggingFace datasets all_datasets.update(self.get_downloaded_datasets()) # Get user datasets all_datasets.update(self.get_user_datasets()) return all_datasets def download_dataset(self, dataset_key: str, progress_callback=None) -> Dict: """ Download a dataset from HuggingFace Args: dataset_key: Key identifying the dataset (e.g., 'gtzan') progress_callback: Optional callback for progress updates Returns: Dictionary with dataset info and status """ try: if dataset_key not in self.DATASETS: raise ValueError(f"Unknown dataset: {dataset_key}") dataset_config = self.DATASETS[dataset_key] dataset_name = dataset_config['name'] # Check if already downloaded if self.is_dataset_downloaded(dataset_key): if progress_callback: progress_callback(f"✅ Dataset already downloaded: {dataset_name}") progress_callback(f" Use 'Prepare Datasets' section to prepare for training") # Load and return existing info dataset_dir = self.base_dir / dataset_key metadata_path = dataset_dir / 'dataset_info.json' with open(metadata_path, 'r') as f: info = json.load(f) return { 'success': True, 'dataset': dataset_key, 'info': info, 'already_downloaded': True } if progress_callback: progress_callback(f"đŸ“Ļ Starting download: {dataset_name}") # Show dataset size info size_gb = dataset_config.get('size_gb', 0) if size_gb > 100.0: progress_callback(f"âš ī¸ Large dataset: {size_gb:.1f} GB") progress_callback(f" This may take significant time to download.") elif size_gb > 10.0: progress_callback(f"â„šī¸ Dataset size: ~{size_gb:.1f} GB (may take a few minutes)") else: progress_callback(f"â„šī¸ Dataset size: ~{size_gb:.1f} GB") # Check if dataset is available on HuggingFace if dataset_config['hf_id'] is None: # Custom download needed return self._handle_custom_dataset(dataset_key, dataset_config, progress_callback) # Download from HuggingFace return self._download_from_huggingface(dataset_key, dataset_config, progress_callback) except Exception as e: logger.error(f"Dataset download failed: {e}", exc_info=True) return { 'success': False, 'error': str(e), 'dataset': dataset_key } def _download_from_huggingface(self, dataset_key: str, config: Dict, progress_callback=None) -> Dict: """Download dataset from HuggingFace Hub""" try: from datasets import load_dataset hf_id = config['hf_id'] dataset_dir = self.base_dir / dataset_key dataset_dir.mkdir(parents=True, exist_ok=True) if progress_callback: progress_callback(f"🔍 Loading dataset from HuggingFace Hub: {hf_id}") logger.info(f"Loading dataset: {hf_id}") # Prepare load_dataset parameters load_params = { 'path': hf_id, 'cache_dir': str(dataset_dir / "cache") } # Add optional config/split parameters if 'config' in config: load_params['name'] = config['config'] if 'split' in config: load_params['split'] = config['split'] # Download dataset dataset = load_dataset(**load_params) # Save dataset info for LoRA training compatibility dataset_info = { 'name': config['name'], 'type': config['type'], 'hf_id': hf_id, 'description': config['description'], 'size_gb': config.get('size_gb', 0), 'splits': list(dataset.keys()) if hasattr(dataset, 'keys') else ['default'], 'num_examples': {split: len(dataset[split]) for split in dataset.keys()} if hasattr(dataset, 'keys') else len(dataset), 'features': str(dataset[list(dataset.keys())[0]].features) if hasattr(dataset, 'keys') else str(dataset.features), 'path': str(dataset_dir), # Add placeholders for LoRA training service compatibility 'train_files': [], 'val_files': [], 'train_metadata': [], 'val_metadata': [], 'prepared': False, # Indicates dataset needs preparation before training 'hf_dataset': True # Flag that this is a HuggingFace dataset } # Save metadata metadata_path = dataset_dir / 'dataset_info.json' with open(metadata_path, 'w') as f: json.dump(dataset_info, f, indent=2) if progress_callback: progress_callback(f"✅ Downloaded {config['name']}") if hasattr(dataset, 'keys'): for split in dataset.keys(): progress_callback(f" {split}: {len(dataset[split]):,} samples") else: progress_callback(f" Total: {len(dataset):,} samples") logger.info(f"Dataset downloaded successfully: {dataset_key}") return { 'success': True, 'dataset': dataset_key, 'info': dataset_info } except ImportError: error_msg = "HuggingFace datasets library not installed. Install with: pip install datasets" logger.error(error_msg) if progress_callback: progress_callback(f"❌ {error_msg}") return { 'success': False, 'error': error_msg, 'dataset': dataset_key } except Exception as e: error_msg = f"Failed to download {config['name']}: {str(e)}" logger.error(error_msg, exc_info=True) # Provide helpful error messages if progress_callback: progress_callback(f"❌ {error_msg}") if "doesn't exist" in str(e).lower() or "not found" in str(e).lower(): progress_callback(f" 💡 Dataset '{hf_id}' not found on HuggingFace Hub") progress_callback(f" Check: https://huggingface.co/datasets/{hf_id}") elif "connection" in str(e).lower() or "timeout" in str(e).lower(): progress_callback(f" 💡 Network issue - check your internet connection") elif "permission" in str(e).lower() or "access" in str(e).lower(): progress_callback(f" 💡 Dataset may require authentication or have access restrictions") progress_callback(f"❌ {error_msg}") return { 'success': False, 'error': error_msg, 'dataset': dataset_key } def prepare_dataset_for_training( self, dataset_key: str, train_val_split: float = 0.8, max_samples: Optional[int] = None, progress_callback: Optional[Callable] = None ) -> Dict: """ Prepare a downloaded HuggingFace dataset for LoRA training. Extracts audio files, creates metadata, and splits into train/val sets. Args: dataset_key: Key identifying the dataset (e.g., 'gtzan') train_val_split: Fraction of data to use for training (default: 0.8) max_samples: Maximum number of samples to prepare (None = all) progress_callback: Optional callback for progress updates Returns: Dictionary with preparation results """ try: from datasets import load_from_disk import soundfile as sf import numpy as np if progress_callback: progress_callback(f"🔧 Preparing dataset: {dataset_key}") # Check if dataset exists if dataset_key not in self.DATASETS: raise ValueError(f"Unknown dataset: {dataset_key}") config = self.DATASETS[dataset_key] dataset_dir = self.base_dir / dataset_key cache_dir = dataset_dir / "cache" audio_dir = dataset_dir / "audio" audio_dir.mkdir(parents=True, exist_ok=True) # Load dataset info metadata_path = dataset_dir / 'dataset_info.json' if not metadata_path.exists(): raise ValueError(f"Dataset not downloaded yet. Please download {dataset_key} first.") with open(metadata_path, 'r') as f: dataset_info = json.load(f) if dataset_info.get('prepared'): if progress_callback: progress_callback(f"✅ Dataset already prepared!") return {'success': True, 'dataset': dataset_key, 'already_prepared': True} # Load HuggingFace dataset from cache if progress_callback: progress_callback(f"📂 Loading dataset from cache...") from datasets import load_dataset, Audio import librosa hf_id = config['hf_id'] # Load dataset WITHOUT automatic audio decoding to avoid torchcodec dependency load_params = { 'path': hf_id, 'cache_dir': str(cache_dir), } if 'config' in config: load_params['name'] = config['config'] if 'split' in config: load_params['split'] = config['split'] dataset = load_dataset(**load_params) # Get the appropriate split if hasattr(dataset, 'keys'): # Use 'train' split if available, otherwise first available split split_name = 'train' if 'train' in dataset.keys() else list(dataset.keys())[0] data = dataset[split_name] else: data = dataset # Determine audio column and disable automatic decoding audio_column = None for col in ['audio', 'file', 'path', 'wav']: if col in data.column_names: audio_column = col break if not audio_column: raise ValueError(f"Could not find audio column in dataset. Available columns: {data.column_names}") if progress_callback: progress_callback(f"📂 Found audio column: '{audio_column}'") total_samples = len(data) if max_samples: total_samples = min(total_samples, max_samples) if progress_callback: progress_callback(f"📊 Processing {total_samples} samples...") # Process samples train_files = [] val_files = [] train_metadata = [] val_metadata = [] num_train = int(total_samples * train_val_split) for idx in range(total_samples): try: # Get raw sample data WITHOUT accessing audio column (avoids torchcodec) # Access the underlying Arrow data directly sample_data = data._data.table.slice(idx, 1).to_pydict() # Get the audio column data audio_data = sample_data[audio_column][0] if audio_column in sample_data else None if audio_data is None: logger.warning(f"No audio data for sample {idx}") continue # The audio column in Parquet datasets contains file paths or bytes audio_path_to_load = None if isinstance(audio_data, dict): # Check for 'path' key which contains the cached file path if 'path' in audio_data and audio_data['path']: audio_path_to_load = audio_data['path'] elif 'bytes' in audio_data and audio_data['bytes']: # Write bytes to temp file and load import tempfile with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp: tmp.write(audio_data['bytes']) audio_path_to_load = tmp.name elif isinstance(audio_data, str): # Direct file path audio_path_to_load = audio_data if not audio_path_to_load: logger.warning(f"Could not find audio path for sample {idx}: {type(audio_data)}") continue # Load audio with librosa (no torchcodec needed) audio_array, sample_rate = librosa.load(audio_path_to_load, sr=None) # Save audio file audio_filename = f"sample_{idx:06d}.wav" audio_path = audio_dir / audio_filename sf.write(audio_path, audio_array, sample_rate) # Create metadata metadata = { 'audio_file': str(audio_path), 'sample_rate': sample_rate, 'duration': len(audio_array) / sample_rate, 'dataset': dataset_key, 'index': idx } # Extract additional metadata from dataset for key in sample_data.keys(): if key != audio_column and sample_data[key]: value = sample_data[key][0] if not isinstance(value, (dict, list)): metadata[key] = value # Add to train or val set if idx < num_train: train_files.append(str(audio_path)) train_metadata.append(metadata) else: val_files.append(str(audio_path)) val_metadata.append(metadata) # Progress update if progress_callback and (idx + 1) % 50 == 0: progress_callback(f" Processed {idx + 1}/{total_samples} samples...") except Exception as e: logger.warning(f"Error processing sample {idx}: {str(e)}") continue # Update dataset_info.json with training-ready format dataset_info.update({ 'train_files': train_files, 'val_files': val_files, 'train_metadata': train_metadata, 'val_metadata': val_metadata, 'prepared': True, 'preparation_date': datetime.now().isoformat(), 'num_train_samples': len(train_files), 'num_val_samples': len(val_files), 'train_val_split': train_val_split }) # Save updated metadata with open(metadata_path, 'w') as f: json.dump(dataset_info, f, indent=2) if progress_callback: progress_callback(f"✅ Dataset prepared successfully!") progress_callback(f" Training samples: {len(train_files)}") progress_callback(f" Validation samples: {len(val_files)}") progress_callback(f" Audio files saved to: {audio_dir}") logger.info(f"Dataset {dataset_key} prepared: {len(train_files)} train, {len(val_files)} val") return { 'success': True, 'dataset': dataset_key, 'num_train': len(train_files), 'num_val': len(val_files), 'audio_dir': str(audio_dir) } except Exception as e: error_msg = f"Failed to prepare dataset {dataset_key}: {str(e)}" logger.error(error_msg, exc_info=True) if progress_callback: progress_callback(f"❌ {error_msg}") return { 'success': False, 'error': error_msg, 'dataset': dataset_key } def _handle_custom_dataset(self, dataset_key: str, config: Dict, progress_callback=None) -> Dict: """Handle datasets that require custom download""" if progress_callback: progress_callback( f"âš ī¸ {config['name']} requires manual download\n" f" Visit: {config.get('custom_url', 'N/A')}\n" f" Place files in: training_data/{dataset_key}/" ) return { 'success': False, 'manual_download_required': True, 'dataset': dataset_key, 'url': config.get('custom_url'), 'info': config } def list_available_datasets(self) -> Dict[str, Dict]: """List all available datasets and their configurations""" return self.DATASETS def get_downloaded_dataset_keys(self) -> List[str]: """Get list of already downloaded dataset keys (simple list)""" downloaded = [] for dataset_key in self.DATASETS.keys(): dataset_dir = self.base_dir / dataset_key metadata_path = dataset_dir / 'dataset_info.json' if metadata_path.exists(): downloaded.append(dataset_key) return downloaded def prepare_for_training(self, dataset_key: str) -> Dict: """ Prepare downloaded dataset for LoRA training Args: dataset_key: Dataset to prepare Returns: Dictionary with prepared dataset info """ try: dataset_dir = self.base_dir / dataset_key metadata_path = dataset_dir / 'dataset_info.json' if not metadata_path.exists(): raise ValueError(f"Dataset not downloaded: {dataset_key}") with open(metadata_path) as f: dataset_info = json.load(f) # Create prepared dataset directory prepared_dir = dataset_dir / "prepared" prepared_dir.mkdir(parents=True, exist_ok=True) logger.info(f"Dataset {dataset_key} ready for training") return { 'success': True, 'dataset': dataset_key, 'path': str(prepared_dir), 'info': dataset_info } except Exception as e: logger.error(f"Dataset preparation failed: {e}") return { 'success': False, 'error': str(e), 'dataset': dataset_key }