Spaces:
Running
on
Zero
Running
on
Zero
| # A unified script for inference process | |
| # Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format | |
| import os | |
| import sys | |
| os.environ["PYTOCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility | |
| sys.path.append(f"../../{os.path.dirname(os.path.abspath(__file__))}/third_party/BigVGAN/") | |
| import hashlib | |
| import re | |
| import tempfile | |
| from importlib.resources import files | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| import torch | |
| import torchaudio | |
| import tqdm | |
| from huggingface_hub import snapshot_download, hf_hub_download | |
| from pydub import AudioSegment, silence | |
| from transformers import pipeline | |
| from vocos import Vocos | |
| from model import CFM | |
| from model.utils import ( | |
| get_tokenizer, | |
| convert_char_to_pinyin, | |
| ) | |
| _ref_audio_cache = {} | |
| device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
| # ----------------------------------------- | |
| target_sample_rate = 24000 | |
| n_mel_channels = 100 | |
| hop_length = 256 | |
| win_length = 1024 | |
| n_fft = 1024 | |
| mel_spec_type = "vocos" | |
| target_rms = 0.1 | |
| cross_fade_duration = 0.15 | |
| ode_method = "euler" | |
| nfe_step = 8 # 16, 32 | |
| cfg_strength = 2.0 | |
| sway_sampling_coef = -1.0 | |
| speed = 1.0 | |
| fix_duration = None | |
| # ----------------------------------------- | |
| # chunk text into smaller pieces | |
| def chunk_text(text, max_chars=135): | |
| """ | |
| Splits the input text into chunks, each with a maximum number of characters. | |
| Args: | |
| text (str): The text to be split. | |
| max_chars (int): The maximum number of characters per chunk. | |
| Returns: | |
| List[str]: A list of text chunks. | |
| """ | |
| chunks = [] | |
| current_chunk = "" | |
| # Split the text into sentences based on punctuation followed by whitespace | |
| sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text) | |
| for sentence in sentences: | |
| if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars: | |
| current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence | |
| else: | |
| if current_chunk: | |
| chunks.append(current_chunk.strip()) | |
| current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence | |
| if current_chunk: | |
| chunks.append(current_chunk.strip()) | |
| return chunks | |
| # load vocoder | |
| def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=device, hf_cache_dir=None): | |
| if vocoder_name == "vocos": | |
| # vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device) | |
| if is_local: | |
| print(f"Load vocos from local path {local_path}") | |
| config_path = f"{local_path}/config.yaml" | |
| model_path = f"{local_path}/pytorch_model.bin" | |
| else: | |
| print("Download Vocos from huggingface charactr/vocos-mel-24khz") | |
| repo_id = "charactr/vocos-mel-24khz" | |
| config_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="config.yaml") | |
| model_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="pytorch_model.bin") | |
| vocoder = Vocos.from_hparams(config_path) | |
| state_dict = torch.load(model_path, map_location="cpu", weights_only=True) | |
| from vocos.feature_extractors import EncodecFeatures | |
| if isinstance(vocoder.feature_extractor, EncodecFeatures): | |
| encodec_parameters = { | |
| "feature_extractor.encodec." + key: value | |
| for key, value in vocoder.feature_extractor.encodec.state_dict().items() | |
| } | |
| state_dict.update(encodec_parameters) | |
| vocoder.load_state_dict(state_dict) | |
| # Convert vocoder to bfloat16 if using a compatible device | |
| vocoder = vocoder.eval().to(device).to(torch.float16) | |
| elif vocoder_name == "bigvgan": | |
| try: | |
| from third_party.BigVGAN import bigvgan | |
| except ImportError: | |
| print("You need to follow the README to init submodule and change the BigVGAN source code.") | |
| if is_local: | |
| """download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main""" | |
| vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False) | |
| else: | |
| local_path = snapshot_download(repo_id="nvidia/bigvgan_v2_24khz_100band_256x", cache_dir=hf_cache_dir) | |
| vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False) | |
| vocoder.remove_weight_norm() | |
| vocoder = vocoder.eval().to(device).to(torch.float32) # Convert to bfloat16 | |
| return vocoder | |
| # load asr pipeline | |
| asr_pipe = None | |
| def initialize_asr_pipeline(device: str = device, dtype=None): | |
| if dtype is None: | |
| if "cuda" in device and torch.cuda.get_device_properties(device).major >= 6: | |
| dtype = torch.float16 | |
| elif "cpu" in device: | |
| dtype = torch.float32 | |
| else: | |
| dtype = torch.float32 | |
| global asr_pipe | |
| asr_pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model="openai/whisper-large-v3-turbo", | |
| torch_dtype=dtype, | |
| device=device, | |
| ) | |
| # transcribe | |
| def transcribe(ref_audio, language=None): | |
| global asr_pipe | |
| if asr_pipe is None: | |
| initialize_asr_pipeline(device=device) | |
| return asr_pipe( | |
| ref_audio, | |
| chunk_length_s=30, | |
| batch_size=128, | |
| generate_kwargs={"task": "transcribe", "language": language} if language else {"task": "transcribe"}, | |
| return_timestamps=False, | |
| )["text"].strip() | |
| # load model checkpoint for inference | |
| def load_checkpoint(model, ckpt_path, device: str, dtype=None, use_ema=True): | |
| if dtype is None: | |
| if "cuda" in device and torch.cuda.get_device_properties(device).major >= 6: | |
| dtype = torch.float16 | |
| elif "cpu" in device: | |
| dtype = torch.float32 | |
| else: | |
| dtype = torch.float32 | |
| # Move the model to the desired device and dtype | |
| model = model.to(device=device, dtype=dtype) | |
| #model = model.to(dtype) | |
| ckpt_type = ckpt_path.split(".")[-1] | |
| if ckpt_type == "safetensors": | |
| from safetensors.torch import load_file | |
| checkpoint = load_file(ckpt_path, device=device) | |
| else: | |
| checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True) | |
| if use_ema: | |
| if ckpt_type == "safetensors": | |
| checkpoint = {"ema_model_state_dict": checkpoint} | |
| checkpoint["model_state_dict"] = { | |
| k.replace("ema_model.", ""): v | |
| for k, v in checkpoint["ema_model_state_dict"].items() | |
| if k not in ["initted", "step"] | |
| } | |
| # patch for backward compatibility, 305e3ea | |
| for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]: | |
| if key in checkpoint["model_state_dict"]: | |
| del checkpoint["model_state_dict"][key] | |
| model.load_state_dict(checkpoint["model_state_dict"]) | |
| else: | |
| if ckpt_type == "safetensors": | |
| checkpoint = {"model_state_dict": checkpoint} | |
| model.load_state_dict(checkpoint["model_state_dict"]) | |
| del checkpoint | |
| torch.cuda.empty_cache() | |
| return model.to(device) | |
| # load model for inference | |
| def load_model( | |
| model_cls, | |
| model_cfg, | |
| ckpt_path, | |
| mel_spec_type=mel_spec_type, | |
| vocab_file="", | |
| ode_method=ode_method, | |
| use_ema=True, | |
| device=device, | |
| ): | |
| if vocab_file == "": | |
| vocab_file = "infer/examples/vocab.txt" | |
| tokenizer = "custom" | |
| print("\nvocab : ", vocab_file) | |
| print("token : ", tokenizer) | |
| print("model : ", ckpt_path, "\n") | |
| vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer) | |
| model = CFM( | |
| transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels), | |
| mel_spec_kwargs=dict( | |
| n_fft=n_fft, | |
| hop_length=hop_length, | |
| win_length=win_length, | |
| n_mel_channels=n_mel_channels, | |
| target_sample_rate=target_sample_rate, | |
| mel_spec_type=mel_spec_type, | |
| ), | |
| odeint_kwargs=dict( | |
| method=ode_method, | |
| ), | |
| vocab_char_map=vocab_char_map, | |
| ).to(device) | |
| dtype = torch.float32 if mel_spec_type == "bigvgan" else None | |
| model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema) | |
| return model | |
| def remove_silence_edges(audio, silence_threshold=-42): | |
| # Remove silence from the start | |
| non_silent_start_idx = silence.detect_leading_silence(audio, silence_threshold=silence_threshold) | |
| audio = audio[non_silent_start_idx:] | |
| # Remove silence from the end | |
| non_silent_end_duration = audio.duration_seconds | |
| for ms in reversed(audio): | |
| if ms.dBFS > silence_threshold: | |
| break | |
| non_silent_end_duration -= 0.001 | |
| trimmed_audio = audio[: int(non_silent_end_duration * 1000)] | |
| return trimmed_audio | |
| # preprocess reference audio and text | |
| def preprocess_ref_audio_text(ref_audio_orig, ref_text, clip_short=True, show_info=print, device=device): | |
| show_info("Converting audio...") | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
| aseg = AudioSegment.from_file(ref_audio_orig) | |
| if clip_short: | |
| # 1. try to find long silence for clipping | |
| non_silent_segs = silence.split_on_silence( | |
| aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10 | |
| ) | |
| non_silent_wave = AudioSegment.silent(duration=0) | |
| for non_silent_seg in non_silent_segs: | |
| if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000: | |
| show_info("Audio is over 15s, clipping short. (1)") | |
| break | |
| non_silent_wave += non_silent_seg | |
| # 2. try to find short silence for clipping if 1. failed | |
| if len(non_silent_wave) > 15000: | |
| non_silent_segs = silence.split_on_silence( | |
| aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10 | |
| ) | |
| non_silent_wave = AudioSegment.silent(duration=0) | |
| for non_silent_seg in non_silent_segs: | |
| if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000: | |
| show_info("Audio is over 15s, clipping short. (2)") | |
| break | |
| non_silent_wave += non_silent_seg | |
| aseg = non_silent_wave | |
| # 3. if no proper silence found for clipping | |
| if len(aseg) > 15000: | |
| aseg = aseg[:15000] | |
| show_info("Audio is over 15s, clipping short. (3)") | |
| aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50) | |
| aseg.export(f.name, format="wav") | |
| ref_audio = f.name | |
| # Compute a hash of the reference audio file | |
| with open(ref_audio, "rb") as audio_file: | |
| audio_data = audio_file.read() | |
| audio_hash = hashlib.md5(audio_data).hexdigest() | |
| if not ref_text.strip(): | |
| global _ref_audio_cache | |
| if audio_hash in _ref_audio_cache: | |
| # Use cached asr transcription | |
| show_info("Using cached reference text...") | |
| ref_text = _ref_audio_cache[audio_hash] | |
| else: | |
| show_info("No reference text provided, transcribing reference audio...") | |
| ref_text = transcribe(ref_audio) | |
| # Cache the transcribed text (not caching custom ref_text, enabling users to do manual tweak) | |
| _ref_audio_cache[audio_hash] = ref_text | |
| else: | |
| show_info("Using custom reference text...") | |
| # Ensure ref_text ends with a proper sentence-ending punctuation | |
| if not ref_text.endswith(". ") and not ref_text.endswith("。"): | |
| if ref_text.endswith("."): | |
| ref_text += " " | |
| else: | |
| ref_text += ". " | |
| print("ref_text ", ref_text) | |
| return ref_audio, ref_text | |
| # infer process: chunk text -> infer batches [i.e. infer_batch_process()] | |
| def infer_process( | |
| ref_audio, | |
| ref_text, | |
| gen_text, | |
| model_obj, | |
| vocoder, | |
| mel_spec_type=mel_spec_type, | |
| show_info=print, | |
| progress=tqdm, | |
| target_rms=target_rms, | |
| cross_fade_duration=cross_fade_duration, | |
| nfe_step=nfe_step, | |
| cfg_strength=cfg_strength, | |
| sway_sampling_coef=sway_sampling_coef, | |
| speed=speed, | |
| fix_duration=fix_duration, | |
| device=device, | |
| ): | |
| # Split the input text into batches | |
| audio, sr = torchaudio.load(ref_audio) | |
| max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr)) | |
| gen_text_batches = chunk_text(gen_text, max_chars=max_chars) | |
| for i, gen_text in enumerate(gen_text_batches): | |
| print(f"gen_text {i}", gen_text) | |
| show_info(f"Generating audio in {len(gen_text_batches)} batches...") | |
| return infer_batch_process( | |
| (audio, sr), | |
| ref_text, | |
| gen_text_batches, | |
| model_obj, | |
| vocoder, | |
| mel_spec_type=mel_spec_type, | |
| progress=progress, | |
| target_rms=target_rms, | |
| cross_fade_duration=cross_fade_duration, | |
| nfe_step=nfe_step, | |
| cfg_strength=cfg_strength, | |
| sway_sampling_coef=sway_sampling_coef, | |
| speed=speed, | |
| fix_duration=fix_duration, | |
| device=device, | |
| ) | |
| # infer batches | |
| def infer_batch_process( | |
| ref_audio, | |
| ref_text, | |
| gen_text_batches, | |
| model_obj, | |
| vocoder, | |
| mel_spec_type="vocos", | |
| progress=tqdm, | |
| target_rms=0.1, | |
| cross_fade_duration=0.15, | |
| nfe_step=32, | |
| cfg_strength=2.0, | |
| sway_sampling_coef=-1, | |
| speed=1, | |
| fix_duration=None, | |
| device=None, | |
| ): | |
| audio, sr = ref_audio | |
| if audio.shape[0] > 1: | |
| audio = torch.mean(audio, dim=0, keepdim=True) | |
| rms = torch.sqrt(torch.mean(torch.square(audio))) | |
| if rms < target_rms: | |
| audio = audio * target_rms / rms | |
| if sr != target_sample_rate: | |
| resampler = torchaudio.transforms.Resample(sr, target_sample_rate) | |
| audio = resampler(audio) | |
| audio = audio.to(device) | |
| generated_waves = [] | |
| spectrograms = [] | |
| if len(ref_text[-1].encode("utf-8")) == 1: | |
| ref_text = ref_text + " " | |
| for i, gen_text in enumerate(progress.tqdm(gen_text_batches)): | |
| # Prepare the text | |
| text_list = [ref_text + gen_text] | |
| final_text_list = convert_char_to_pinyin(text_list) | |
| ref_audio_len = audio.shape[-1] // hop_length | |
| if fix_duration is not None: | |
| duration = int(fix_duration * target_sample_rate / hop_length) | |
| else: | |
| # Calculate duration | |
| ref_text_len = len(ref_text.encode("utf-8")) | |
| gen_text_len = len(gen_text.encode("utf-8")) | |
| duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed) | |
| # inference | |
| with torch.inference_mode(): | |
| generated, _ = model_obj.sample( | |
| cond=audio, | |
| text=final_text_list, | |
| duration=duration, | |
| steps=nfe_step, | |
| cfg_strength=cfg_strength, | |
| sway_sampling_coef=sway_sampling_coef, | |
| ) | |
| generated = generated.to(torch.float32) | |
| generated = generated[:, ref_audio_len:, :] | |
| generated_mel_spec = generated.permute(0, 2, 1) | |
| if mel_spec_type == "vocos": | |
| generated_wave = vocoder.decode(generated_mel_spec) | |
| elif mel_spec_type == "bigvgan": | |
| generated_wave = vocoder(generated_mel_spec) | |
| if rms < target_rms: | |
| generated_wave = generated_wave * rms / target_rms | |
| # wav -> numpy | |
| generated_wave = generated_wave.squeeze().cpu().numpy() | |
| generated_waves.append(generated_wave) | |
| spectrograms.append(generated_mel_spec[0].cpu().numpy()) | |
| # Combine all generated waves with cross-fading | |
| if cross_fade_duration <= 0: | |
| # Simply concatenate | |
| final_wave = np.concatenate(generated_waves) | |
| else: | |
| final_wave = generated_waves[0] | |
| for i in range(1, len(generated_waves)): | |
| prev_wave = final_wave | |
| next_wave = generated_waves[i] | |
| # Calculate cross-fade samples, ensuring it does not exceed wave lengths | |
| cross_fade_samples = int(cross_fade_duration * target_sample_rate) | |
| cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave)) | |
| if cross_fade_samples <= 0: | |
| # No overlap possible, concatenate | |
| final_wave = np.concatenate([prev_wave, next_wave]) | |
| continue | |
| # Overlapping parts | |
| prev_overlap = prev_wave[-cross_fade_samples:] | |
| next_overlap = next_wave[:cross_fade_samples] | |
| # Fade out and fade in | |
| fade_out = np.linspace(1, 0, cross_fade_samples) | |
| fade_in = np.linspace(0, 1, cross_fade_samples) | |
| # Cross-faded overlap | |
| cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in | |
| # Combine | |
| new_wave = np.concatenate( | |
| [prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]] | |
| ) | |
| final_wave = new_wave | |
| # Create a combined spectrogram | |
| combined_spectrogram = np.concatenate(spectrograms, axis=1) | |
| return final_wave, target_sample_rate, combined_spectrogram | |
| # remove silence from generated wav | |
| def remove_silence_for_generated_wav(filename): | |
| aseg = AudioSegment.from_file(filename) | |
| non_silent_segs = silence.split_on_silence( | |
| aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500, seek_step=10 | |
| ) | |
| non_silent_wave = AudioSegment.silent(duration=0) | |
| for non_silent_seg in non_silent_segs: | |
| non_silent_wave += non_silent_seg | |
| aseg = non_silent_wave | |
| aseg.export(filename, format="wav") | |
| # save spectrogram | |
| def save_spectrogram(spectrogram, path): | |
| plt.figure(figsize=(12, 4)) | |
| plt.imshow(spectrogram, origin="lower", aspect="auto") | |
| plt.colorbar() | |
| plt.savefig(path) | |
| plt.close() | |