Spaces:
Running
on
Zero
Running
on
Zero
Create inference_cli.py
Browse files- inference_cli.py +895 -0
inference_cli.py
ADDED
|
@@ -0,0 +1,895 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import codecs
|
| 3 |
+
import re
|
| 4 |
+
import tempfile
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import logging
|
| 7 |
+
import numpy as np
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
import tomli
|
| 10 |
+
import torch
|
| 11 |
+
import torchaudio
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
from einops import rearrange
|
| 14 |
+
from pydub import AudioSegment, silence
|
| 15 |
+
from transformers import pipeline
|
| 16 |
+
from huggingface_hub import login
|
| 17 |
+
from cached_path import cached_path
|
| 18 |
+
import matplotlib.pyplot as plt # Needed for save_spectrogram
|
| 19 |
+
|
| 20 |
+
# --- Import Model Architectures ---
|
| 21 |
+
# !! Ensure these models are defined in your project's 'model' module !!
|
| 22 |
+
try:
|
| 23 |
+
from model import UNetT, DiT
|
| 24 |
+
except ImportError:
|
| 25 |
+
print("Warning: Could not import UNetT, DiT from 'model'. Using placeholders.")
|
| 26 |
+
# Placeholder classes if import fails (script might not work correctly)
|
| 27 |
+
class MockModel:
|
| 28 |
+
def __init__(self, *args, **kwargs): pass
|
| 29 |
+
def to(self, device): return self
|
| 30 |
+
def eval(self): pass
|
| 31 |
+
def sample(self, *args, **kwargs):
|
| 32 |
+
duration = kwargs.get('duration', 500); mel_dim = 100
|
| 33 |
+
return torch.randn(1, duration, mel_dim), None
|
| 34 |
+
@property
|
| 35 |
+
def device(self): return torch.device("cpu")
|
| 36 |
+
DiT = MockModel
|
| 37 |
+
UNetT = MockModel
|
| 38 |
+
|
| 39 |
+
# --- Import/Define Utility Functions ---
|
| 40 |
+
|
| 41 |
+
from tokenizers import Tokenizer
|
| 42 |
+
from phonemizer import phonemize
|
| 43 |
+
|
| 44 |
+
# --- Functions copied/adapted from app.py ---
|
| 45 |
+
|
| 46 |
+
# Function to load vocoder (from app.py context, may need adjustment)
|
| 47 |
+
def load_vocoder(device='cpu'):
|
| 48 |
+
"""Loads the Vocos vocoder."""
|
| 49 |
+
print("Loading Vocos vocoder (charactr/vocos-mel-24khz)...")
|
| 50 |
+
try:
|
| 51 |
+
# Ensure vocos library is installed: pip install vocos
|
| 52 |
+
from vocos import Vocos
|
| 53 |
+
# Determine torch dtype based on device for potential efficiency
|
| 54 |
+
# Note: Vocos might internally cast, but being explicit can help.
|
| 55 |
+
# Using float32 as a safe default unless on CUDA where float16 might work.
|
| 56 |
+
vocos_dtype = torch.float16 if str(device) == 'cuda' else torch.float32
|
| 57 |
+
|
| 58 |
+
vocos_model = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device)
|
| 59 |
+
# Cast to appropriate dtype if needed, although Vocos might handle this.
|
| 60 |
+
# vocos_model = vocos_model.to(dtype=vocos_dtype) # Optional casting
|
| 61 |
+
vocos_model.eval()
|
| 62 |
+
print("Vocos vocoder loaded successfully.")
|
| 63 |
+
return vocos_model
|
| 64 |
+
except ImportError:
|
| 65 |
+
print("Error: 'vocos' library not found. Please install it: pip install vocos")
|
| 66 |
+
raise
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"Error loading Vocos model: {e}")
|
| 69 |
+
raise
|
| 70 |
+
|
| 71 |
+
# Function to remove silence from edges (from app.py)
|
| 72 |
+
def remove_silence_edges(aseg):
|
| 73 |
+
"""Removes silence from the beginning and end of an AudioSegment."""
|
| 74 |
+
print("Removing silence from audio edges...")
|
| 75 |
+
start_trim = silence.detect_leading_silence(aseg)
|
| 76 |
+
end_trim = silence.detect_leading_silence(aseg.reverse())
|
| 77 |
+
duration = len(aseg)
|
| 78 |
+
trimmed_aseg = aseg[start_trim:duration-end_trim]
|
| 79 |
+
print(f"Removed {start_trim}ms from start, {end_trim}ms from end.")
|
| 80 |
+
return trimmed_aseg
|
| 81 |
+
|
| 82 |
+
# Function to save spectrogram (from app.py)
|
| 83 |
+
def save_spectrogram(spectrogram, file_path):
|
| 84 |
+
"""Saves a spectrogram visualization to a file."""
|
| 85 |
+
if spectrogram is None:
|
| 86 |
+
print("Spectrogram data is None, cannot save.")
|
| 87 |
+
return
|
| 88 |
+
try:
|
| 89 |
+
print(f"Saving spectrogram to {file_path}...")
|
| 90 |
+
plt.figure(figsize=(10, 4))
|
| 91 |
+
plt.imshow(spectrogram, aspect='auto', origin='lower', cmap='viridis')
|
| 92 |
+
plt.colorbar(label='Mel power')
|
| 93 |
+
plt.xlabel('Frames')
|
| 94 |
+
plt.ylabel('Mel bins')
|
| 95 |
+
plt.title('Generated Mel Spectrogram')
|
| 96 |
+
plt.tight_layout()
|
| 97 |
+
plt.savefig(file_path)
|
| 98 |
+
plt.close() # Close the figure to free memory
|
| 99 |
+
print("Spectrogram saved.")
|
| 100 |
+
except Exception as e:
|
| 101 |
+
print(f"Error saving spectrogram: {e}")
|
| 102 |
+
|
| 103 |
+
# Helper function to load checkpoint (from app.py, slightly modified for CLI)
|
| 104 |
+
def load_checkpoint(model, ckpt_path, device, use_ema=False):
|
| 105 |
+
"""Loads model weights from a checkpoint file (.pt or .safetensors)."""
|
| 106 |
+
print(f"Loading checkpoint from {ckpt_path}...")
|
| 107 |
+
try:
|
| 108 |
+
if ckpt_path.endswith(".safetensors"):
|
| 109 |
+
# Ensure safetensors is installed: pip install safetensors
|
| 110 |
+
from safetensors.torch import load_file
|
| 111 |
+
state_dict = load_file(ckpt_path, device="cpu")
|
| 112 |
+
elif ckpt_path.endswith(".pt"):
|
| 113 |
+
state_dict = torch.load(ckpt_path, map_location="cpu")
|
| 114 |
+
else:
|
| 115 |
+
raise ValueError(f"Unsupported checkpoint format: {ckpt_path}. Must be .pt or .safetensors")
|
| 116 |
+
|
| 117 |
+
# Standardize state_dict format (e.g., remove 'state_dict' key if present)
|
| 118 |
+
if "state_dict" in state_dict:
|
| 119 |
+
state_dict = state_dict["state_dict"]
|
| 120 |
+
|
| 121 |
+
# Handle EMA weights
|
| 122 |
+
ema_key_prefix = "ema_model." # Adjust if your EMA keys have a different prefix
|
| 123 |
+
final_state_dict = {}
|
| 124 |
+
has_ema = any(k.startswith(ema_key_prefix) for k in state_dict.keys())
|
| 125 |
+
|
| 126 |
+
if use_ema:
|
| 127 |
+
if has_ema:
|
| 128 |
+
print("Attempting to load EMA weights.")
|
| 129 |
+
ema_state_dict = {k[len(ema_key_prefix):]: v for k, v in state_dict.items() if k.startswith(ema_key_prefix)}
|
| 130 |
+
if ema_state_dict:
|
| 131 |
+
final_state_dict = ema_state_dict
|
| 132 |
+
print("Using EMA weights.")
|
| 133 |
+
else:
|
| 134 |
+
# This case shouldn't happen if has_ema is true, but as a safeguard:
|
| 135 |
+
print("Warning: EMA weights requested but none found starting with prefix. Using regular weights.")
|
| 136 |
+
final_state_dict = {k: v for k, v in state_dict.items() if not k.startswith(ema_key_prefix)}
|
| 137 |
+
else:
|
| 138 |
+
print("Warning: EMA weights requested but no keys found with EMA prefix. Using regular weights.")
|
| 139 |
+
final_state_dict = state_dict # Use the original dict if no EMA keys exist
|
| 140 |
+
else:
|
| 141 |
+
print("Loading non-EMA weights.")
|
| 142 |
+
# Filter out EMA weights if they exist and we explicitly don't want them
|
| 143 |
+
final_state_dict = {k: v for k, v in state_dict.items() if not k.startswith(ema_key_prefix)}
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# Load into model, handling potential 'module.' prefix from DDP
|
| 147 |
+
model_state_dict = model.state_dict()
|
| 148 |
+
processed_state_dict = {}
|
| 149 |
+
for k, v in final_state_dict.items():
|
| 150 |
+
if k.startswith("module."):
|
| 151 |
+
k_proc = k[len("module."):]
|
| 152 |
+
else:
|
| 153 |
+
k_proc = k
|
| 154 |
+
|
| 155 |
+
if k_proc in model_state_dict:
|
| 156 |
+
if model_state_dict[k_proc].shape == v.shape:
|
| 157 |
+
processed_state_dict[k_proc] = v
|
| 158 |
+
else:
|
| 159 |
+
print(f"Warning: Shape mismatch for key {k_proc}. Checkpoint: {v.shape}, Model: {model_state_dict[k_proc].shape}. Skipping.")
|
| 160 |
+
# else: # Optional: Log unexpected keys
|
| 161 |
+
# print(f"Warning: Key {k_proc} from checkpoint not found in model. Skipping.")
|
| 162 |
+
|
| 163 |
+
missing_keys, unexpected_keys = model.load_state_dict(processed_state_dict, strict=False)
|
| 164 |
+
|
| 165 |
+
if missing_keys:
|
| 166 |
+
print(f"Warning: Missing keys in model not found in checkpoint: {missing_keys}")
|
| 167 |
+
if unexpected_keys:
|
| 168 |
+
# This should ideally be empty if we filter correctly, but good to check.
|
| 169 |
+
print(f"Warning: Unexpected keys (should not happen with filtering): {unexpected_keys}")
|
| 170 |
+
|
| 171 |
+
print(f"Checkpoint loaded successfully from {ckpt_path}")
|
| 172 |
+
|
| 173 |
+
except FileNotFoundError:
|
| 174 |
+
print(f"Error: Checkpoint file not found at {ckpt_path}")
|
| 175 |
+
raise
|
| 176 |
+
except Exception as e:
|
| 177 |
+
print(f"Error loading checkpoint from {ckpt_path}: {e}")
|
| 178 |
+
raise # Re-raise the exception
|
| 179 |
+
|
| 180 |
+
model.eval()
|
| 181 |
+
return model.to(device)
|
| 182 |
+
|
| 183 |
+
# Primary model loading function (from app.py)
|
| 184 |
+
def load_custom(model_cls, model_cfg, ckpt_path: str, vocab_size: int, device='cpu', use_ema=True):
|
| 185 |
+
"""Loads a custom TTS model (DiT or UNetT) with specified config and checkpoint."""
|
| 186 |
+
ckpt_path = ckpt_path.strip()
|
| 187 |
+
|
| 188 |
+
if ckpt_path.startswith("hf://"):
|
| 189 |
+
print(f"Downloading checkpoint from Hugging Face Hub: {ckpt_path}")
|
| 190 |
+
try:
|
| 191 |
+
ckpt_path = str(cached_path(ckpt_path))
|
| 192 |
+
print(f"Checkpoint downloaded to: {ckpt_path}")
|
| 193 |
+
except Exception as e:
|
| 194 |
+
print(f"Error downloading checkpoint {ckpt_path}: {e}")
|
| 195 |
+
raise
|
| 196 |
+
|
| 197 |
+
if not Path(ckpt_path).exists():
|
| 198 |
+
raise FileNotFoundError(f"Checkpoint file not found: {ckpt_path}")
|
| 199 |
+
|
| 200 |
+
# Ensure necessary config keys are present (add defaults if missing)
|
| 201 |
+
if 'mel_dim' not in model_cfg:
|
| 202 |
+
model_cfg['mel_dim'] = 100 # Default mel channels
|
| 203 |
+
print(f"Warning: 'mel_dim' not in model_cfg, defaulting to {model_cfg['mel_dim']}")
|
| 204 |
+
if 'text_num_embeds' not in model_cfg:
|
| 205 |
+
model_cfg['text_num_embeds'] = vocab_size
|
| 206 |
+
print(f"Setting 'text_num_embeds' in model_cfg to vocab size: {vocab_size}")
|
| 207 |
+
|
| 208 |
+
print(f"Instantiating model: {model_cls.__name__} with config: {model_cfg}")
|
| 209 |
+
try:
|
| 210 |
+
model = model_cls(**model_cfg).to(device) # Instantiate the model
|
| 211 |
+
except Exception as e:
|
| 212 |
+
print(f"Error instantiating model {model_cls.__name__} with config {model_cfg}: {e}")
|
| 213 |
+
raise
|
| 214 |
+
|
| 215 |
+
# Load weights using the helper function
|
| 216 |
+
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
|
| 217 |
+
model.eval() # Ensure model is in evaluation mode
|
| 218 |
+
return model
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# Text chunking function (from app.py)
|
| 222 |
+
def chunk_text(text, max_chars):
|
| 223 |
+
"""
|
| 224 |
+
Splits the input text into chunks based on punctuation and length limits.
|
| 225 |
+
(Copied from previous answer, assumed correct)
|
| 226 |
+
"""
|
| 227 |
+
if not isinstance(text, str):
|
| 228 |
+
print("Warning: Input to chunk_text is not a string. Returning empty list.")
|
| 229 |
+
return []
|
| 230 |
+
|
| 231 |
+
if max_chars > 135:
|
| 232 |
+
print(f"Warning: Calculated max_chars ({max_chars}) > 135. Capping at 135.")
|
| 233 |
+
max_chars = 135
|
| 234 |
+
if max_chars < 50:
|
| 235 |
+
print(f"Warning: Calculated max_chars ({max_chars}) < 50. Setting to 50.")
|
| 236 |
+
max_chars = 50
|
| 237 |
+
|
| 238 |
+
split_after_space_chars = max_chars + int(max_chars * 0.33)
|
| 239 |
+
chunks = []
|
| 240 |
+
current_chunk = ""
|
| 241 |
+
|
| 242 |
+
# Split the text into sentences based on punctuation followed by whitespace
|
| 243 |
+
sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])\s*", text) # Added \s* after CJK punc
|
| 244 |
+
|
| 245 |
+
for sentence in sentences:
|
| 246 |
+
sentence = sentence.strip()
|
| 247 |
+
if not sentence:
|
| 248 |
+
continue
|
| 249 |
+
|
| 250 |
+
# Estimate potential length increase due to space
|
| 251 |
+
estimated_len = len(current_chunk) + len(sentence) + (1 if current_chunk else 0)
|
| 252 |
+
|
| 253 |
+
if estimated_len <= max_chars:
|
| 254 |
+
current_chunk += (" " + sentence) if current_chunk else sentence
|
| 255 |
+
else:
|
| 256 |
+
# Process the current_chunk if adding the new sentence exceeds max_chars
|
| 257 |
+
while len(current_chunk) > split_after_space_chars:
|
| 258 |
+
split_index = current_chunk.rfind(" ", 0, split_after_space_chars)
|
| 259 |
+
if split_index == -1: split_index = split_after_space_chars
|
| 260 |
+
chunks.append(current_chunk[:split_index].strip())
|
| 261 |
+
current_chunk = current_chunk[split_index:].strip()
|
| 262 |
+
|
| 263 |
+
if current_chunk:
|
| 264 |
+
chunks.append(current_chunk)
|
| 265 |
+
|
| 266 |
+
# Start new chunk, handle if sentence itself is too long
|
| 267 |
+
while len(sentence) > split_after_space_chars:
|
| 268 |
+
split_index = sentence.rfind(" ", 0, split_after_space_chars)
|
| 269 |
+
if split_index == -1: split_index = split_after_space_chars
|
| 270 |
+
chunks.append(sentence[:split_index].strip())
|
| 271 |
+
sentence = sentence[split_index:].strip()
|
| 272 |
+
current_chunk = sentence
|
| 273 |
+
|
| 274 |
+
# Handle the last chunk
|
| 275 |
+
while len(current_chunk) > split_after_space_chars:
|
| 276 |
+
split_index = current_chunk.rfind(" ", 0, split_after_space_chars)
|
| 277 |
+
if split_index == -1: split_index = split_after_space_chars
|
| 278 |
+
chunks.append(current_chunk[:split_index].strip())
|
| 279 |
+
current_chunk = current_chunk[split_index:].strip()
|
| 280 |
+
|
| 281 |
+
if current_chunk:
|
| 282 |
+
chunks.append(current_chunk.strip())
|
| 283 |
+
|
| 284 |
+
return [c for c in chunks if c] # Filter empty chunks
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
# Text to IPA function (from app.py)
|
| 288 |
+
def text_to_ipa(text, language):
|
| 289 |
+
"""Converts text to IPA using phonemizer with espeak backend."""
|
| 290 |
+
if not isinstance(text, str) or not text.strip():
|
| 291 |
+
print(f"Warning: Invalid input text for IPA conversion: {text}")
|
| 292 |
+
return "" # Return empty string for invalid input
|
| 293 |
+
try:
|
| 294 |
+
# Ensure phonemizer is installed: pip install phonemizer
|
| 295 |
+
# Ensure espeak-ng is installed: sudo apt-get install espeak-ng (or equivalent)
|
| 296 |
+
ipa_text = phonemize(
|
| 297 |
+
text,
|
| 298 |
+
language=language,
|
| 299 |
+
backend='espeak',
|
| 300 |
+
strip=False, # Keep punctuation
|
| 301 |
+
preserve_punctuation=True,
|
| 302 |
+
with_stress=True,
|
| 303 |
+
language_switch='remove-flags', # Use this instead of regex removal
|
| 304 |
+
njobs=1 # Set njobs=1 for potentially better stability/simpler debugging
|
| 305 |
+
)
|
| 306 |
+
# Specific removals (might be redundant with remove-flags, but kept for consistency)
|
| 307 |
+
ipa_text = re.sub(r'tʃˈaɪniːzlˈe̞tə', '', ipa_text)
|
| 308 |
+
ipa_text = re.sub(r'tʃˈaɪniːzɭˈetə', '', ipa_text)
|
| 309 |
+
ipa_text = re.sub(r'dʒˈapəniːzlˈe̞tə', '', ipa_text)
|
| 310 |
+
ipa_text = re.sub(r'dʒˈapəniːzɭˈetə', '', ipa_text)
|
| 311 |
+
|
| 312 |
+
ipa_text = ipa_text.strip()
|
| 313 |
+
# Replace multiple spaces with single space
|
| 314 |
+
ipa_text = re.sub(r'\s+', ' ', ipa_text)
|
| 315 |
+
|
| 316 |
+
print(f"Text: '{text}' | Lang: {language} | IPA: '{ipa_text}'")
|
| 317 |
+
return ipa_text
|
| 318 |
+
except ImportError:
|
| 319 |
+
print("Error: 'phonemizer' library not found. Please install it: pip install phonemizer")
|
| 320 |
+
raise
|
| 321 |
+
except Exception as e:
|
| 322 |
+
# Check if it's an espeak error (often happens if language is unsupported)
|
| 323 |
+
if "espeak" in str(e).lower():
|
| 324 |
+
print(f"Error: Espeak backend failed for language '{language}'. Is the language code valid and espeak-ng installed/supporting it?")
|
| 325 |
+
print(f" Original error: {e}")
|
| 326 |
+
else:
|
| 327 |
+
print(f"Error phonemizing text: '{text}' with language '{language}'. Error: {e}")
|
| 328 |
+
# Decide how to handle error
|
| 329 |
+
raise ValueError(f"Phonemization failed for '{text}' ({language})") from e
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
# --- End of functions from app.py ---
|
| 333 |
+
|
| 334 |
+
# --- Argument Parser Setup ---
|
| 335 |
+
# (Parser definition remains the same as previous refactored version)
|
| 336 |
+
parser = argparse.ArgumentParser(
|
| 337 |
+
prog="python3 inference-cli.py",
|
| 338 |
+
description="Commandline interface for F5/E2 TTS.",
|
| 339 |
+
)
|
| 340 |
+
parser.add_argument(
|
| 341 |
+
"-c", "--config", type=str, default="inference-cli.toml",
|
| 342 |
+
help="Path to configuration file (TOML format). Default: inference-cli.toml"
|
| 343 |
+
)
|
| 344 |
+
# --- Arguments overriding config or providing inputs ---
|
| 345 |
+
parser.add_argument( "--ckpt_path", type=str, default=None, help="Path or Hub ID (hf://...) to the TTS model checkpoint (.pt/.safetensors). Overrides config.")
|
| 346 |
+
parser.add_argument( "--ref_audio", type=str, default=None, help="Path to the reference audio file (<10s recommended). Overrides config.")
|
| 347 |
+
parser.add_argument( "--ref_text", type=str, default=None, help="Reference text. If omitted, Whisper transcription is used. Overrides config.")
|
| 348 |
+
parser.add_argument( "--gen_text", type=str, default=None, help="Text to synthesize. Overrides config.")
|
| 349 |
+
parser.add_argument( "--gen_file", type=str, default=None, help="File containing text to synthesize (overrides --gen_text and config).")
|
| 350 |
+
parser.add_argument( "--output_dir", type=str, default=None, help="Directory to save output audio and spectrogram. Overrides config.")
|
| 351 |
+
parser.add_argument( "--output_name", type=str, default="out", help="Base name for output files (e.g., 'my_speech' -> my_speech.wav, my_speech.png). Default: out.")
|
| 352 |
+
# --- Parameter Arguments ---
|
| 353 |
+
parser.add_argument( "--ref_language", type=str, default=None, help="Language code for reference text phonemization (e.g., 'en-us', 'pl', 'de'). Overrides config.")
|
| 354 |
+
parser.add_argument( "--language", type=str, default=None, help="Language code for generated text phonemization (e.g., 'en-us', 'pl', 'de'). Overrides config.")
|
| 355 |
+
parser.add_argument( "--speed", type=float, default=None, help="Speech speed multiplier. Overrides config.")
|
| 356 |
+
parser.add_argument( "--nfe", type=int, default=None, help="Number of function evaluations (sampling steps). Overrides config.")
|
| 357 |
+
parser.add_argument( "--cfg", type=float, default=None, help="Classifier-Free Guidance strength. Overrides config.")
|
| 358 |
+
parser.add_argument( "--sway", type=float, default=None, help="Sway sampling coefficient. Overrides config.")
|
| 359 |
+
parser.add_argument( "--cross_fade", type=float, default=None, help="Cross-fade duration between batches (seconds). Overrides config.")
|
| 360 |
+
parser.add_argument( "--remove_silence", action=argparse.BooleanOptionalAction, default=None, help="Enable/disable final silence removal. Overrides config.")
|
| 361 |
+
parser.add_argument( "--hf_token", type=str, default=None, help="Hugging Face API token (for downloading private models/checkpoints).")
|
| 362 |
+
parser.add_argument( "--tokenizer_path", type=str, default=None, help="Path to the tokenizer.json file. Overrides config.")
|
| 363 |
+
parser.add_argument( "--device", type=str, default=None, help="Device to use ('cuda', 'cpu', 'mps'). Auto-detects if not set.")
|
| 364 |
+
parser.add_argument( "--dtype", type=str, default=None, help="Data type ('float16', 'bfloat16', 'float32'). Auto-selects if not set.")
|
| 365 |
+
|
| 366 |
+
args = parser.parse_args()
|
| 367 |
+
|
| 368 |
+
# --- Load Configuration ---
|
| 369 |
+
config = {}
|
| 370 |
+
if Path(args.config).exists():
|
| 371 |
+
try:
|
| 372 |
+
with open(args.config, "rb") as f:
|
| 373 |
+
config = tomli.load(f)
|
| 374 |
+
print(f"Loaded configuration from {args.config}")
|
| 375 |
+
except Exception as e:
|
| 376 |
+
print(f"Warning: Could not load config file {args.config}. Error: {e}")
|
| 377 |
+
else:
|
| 378 |
+
print(f"Warning: Config file {args.config} not found. Using defaults and CLI args.")
|
| 379 |
+
|
| 380 |
+
# --- Determine Parameters (CLI > Config > Defaults) ---
|
| 381 |
+
# (Parameter determination remains the same)
|
| 382 |
+
ckpt_path = args.ckpt_path or config.get("ckpt_path", "hf://Gregniuki/F5-tts_English_German_Polish/multi3/model_900000.pt")
|
| 383 |
+
ref_audio_path = args.ref_audio or config.get("ref_audio")
|
| 384 |
+
ref_text = args.ref_text if args.ref_text is not None else config.get("ref_text", "")
|
| 385 |
+
gen_text = args.gen_text or config.get("gen_text")
|
| 386 |
+
gen_file = args.gen_file or config.get("gen_file")
|
| 387 |
+
output_dir = Path(args.output_dir or config.get("output_dir", "."))
|
| 388 |
+
output_name = args.output_name or config.get("output_name", "out")
|
| 389 |
+
|
| 390 |
+
ref_language = args.ref_language or config.get("ref_language", "en-us")
|
| 391 |
+
language = args.language or config.get("language", "en-us")
|
| 392 |
+
speed = args.speed if args.speed is not None else config.get("speed", 1.0)
|
| 393 |
+
nfe_step = args.nfe if args.nfe is not None else config.get("nfe", 32)
|
| 394 |
+
cfg_strength = args.cfg if args.cfg is not None else config.get("cfg", 2.0)
|
| 395 |
+
sway_sampling_coef = args.sway if args.sway is not None else config.get("sway", -1.0)
|
| 396 |
+
cross_fade_duration = args.cross_fade if args.cross_fade is not None else config.get("cross_fade", 0.15)
|
| 397 |
+
remove_silence_flag = args.remove_silence if args.remove_silence is not None else config.get("remove_silence", False)
|
| 398 |
+
hf_token = args.hf_token or config.get("hf_token")
|
| 399 |
+
tokenizer_path = args.tokenizer_path or config.get("tokenizer_path", "data/Emilia_ZH_EN_pinyin/tokenizer.json")
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
# --- Validate Required Arguments ---
|
| 403 |
+
if not ckpt_path: raise ValueError("Missing required argument/config: --ckpt_path")
|
| 404 |
+
if not ref_audio_path: raise ValueError("Missing required argument/config: --ref_audio")
|
| 405 |
+
if not gen_text and not gen_file: raise ValueError("Missing required argument/config: --gen_text or --gen_file")
|
| 406 |
+
|
| 407 |
+
# --- Read gen_text from file if provided ---
|
| 408 |
+
if gen_file:
|
| 409 |
+
try:
|
| 410 |
+
with codecs.open(gen_file, "r", "utf-8") as f: gen_text = f.read()
|
| 411 |
+
print(f"Loaded generation text from {gen_file}")
|
| 412 |
+
except Exception as e: raise ValueError(f"Error reading generation text file {gen_file}: {e}")
|
| 413 |
+
|
| 414 |
+
# --- Setup Device and Dtype ---
|
| 415 |
+
# (Device/Dtype setup remains the same)
|
| 416 |
+
cli_device = args.device or config.get("device")
|
| 417 |
+
if cli_device:
|
| 418 |
+
device = torch.device(cli_device)
|
| 419 |
+
else:
|
| 420 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
|
| 421 |
+
|
| 422 |
+
cli_dtype = args.dtype or config.get("dtype")
|
| 423 |
+
if cli_dtype:
|
| 424 |
+
dtype_map = {"float16": torch.float16, "bfloat16": torch.bfloat16, "float32": torch.float32}
|
| 425 |
+
if cli_dtype in dtype_map: dtype = dtype_map[cli_dtype]
|
| 426 |
+
else: raise ValueError(f"Unsupported dtype: {cli_dtype}")
|
| 427 |
+
else:
|
| 428 |
+
if device.type == "cuda": dtype = torch.float16
|
| 429 |
+
elif device.type == "cpu" and hasattr(torch.backends, 'cpu') and torch.backends.cpu.supports_bfloat16: dtype = torch.bfloat16
|
| 430 |
+
else: dtype = torch.float32
|
| 431 |
+
|
| 432 |
+
print(f"Using device: {device}, dtype: {dtype}")
|
| 433 |
+
|
| 434 |
+
# --- Hugging Face Login ---
|
| 435 |
+
if hf_token:
|
| 436 |
+
print("Logging in to Hugging Face Hub...")
|
| 437 |
+
try:
|
| 438 |
+
login(token=hf_token)
|
| 439 |
+
print("Logged in successfully.")
|
| 440 |
+
except Exception as e:
|
| 441 |
+
print(f"Warning: Hugging Face login failed: {e}")
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
# --- Create Output Directory ---
|
| 445 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 446 |
+
wave_path = output_dir / f"{output_name}.wav"
|
| 447 |
+
spectrogram_path = output_dir / f"{output_name}.png"
|
| 448 |
+
|
| 449 |
+
# --- Load Models and Tokenizer ---
|
| 450 |
+
print("Loading Tokenizer...")
|
| 451 |
+
try:
|
| 452 |
+
if not Path(tokenizer_path).exists():
|
| 453 |
+
raise FileNotFoundError(f"Tokenizer file not found: {tokenizer_path}")
|
| 454 |
+
tokenizer = Tokenizer.from_file(tokenizer_path)
|
| 455 |
+
vocab_size = tokenizer.get_vocab_size()
|
| 456 |
+
print(f"Tokenizer loaded successfully. Vocab size: {vocab_size}")
|
| 457 |
+
except Exception as e:
|
| 458 |
+
raise ValueError(f"Error loading tokenizer from {tokenizer_path}: {e}")
|
| 459 |
+
|
| 460 |
+
print("Loading Vocoder...")
|
| 461 |
+
# Pass device to load_vocoder
|
| 462 |
+
vocos = load_vocoder(device=device) # Already includes .to(device).eval()
|
| 463 |
+
|
| 464 |
+
print("Loading ASR Model (Whisper)...")
|
| 465 |
+
try:
|
| 466 |
+
whisper_dtype = torch.float16 if device.type == 'cuda' else torch.float32
|
| 467 |
+
# Reduce default batch_size for Whisper CLI use
|
| 468 |
+
pipe = pipeline(
|
| 469 |
+
"automatic-speech-recognition",
|
| 470 |
+
model="openai/whisper-large-v3-turbo",
|
| 471 |
+
torch_dtype=whisper_dtype,
|
| 472 |
+
device=device,
|
| 473 |
+
model_kwargs={"attn_implementation": "sdpa"} # Use SDPA if available
|
| 474 |
+
)
|
| 475 |
+
print("Whisper model loaded.")
|
| 476 |
+
except Exception as e:
|
| 477 |
+
print(f"Warning: Could not load Whisper ASR model: {e}. Transcription will not be available.")
|
| 478 |
+
pipe = None
|
| 479 |
+
|
| 480 |
+
print("Loading TTS Model...")
|
| 481 |
+
# --- Determine Model Class and Config ---
|
| 482 |
+
# Example configs (ensure they match your actual model requirements)
|
| 483 |
+
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
| 484 |
+
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) # Add mel_dim/text_num_embeds if needed by class
|
| 485 |
+
|
| 486 |
+
# Heuristic to determine model class (improve if needed)
|
| 487 |
+
if "E2TTS" in ckpt_path or "UNetT" in ckpt_path:
|
| 488 |
+
model_cls = UNetT
|
| 489 |
+
model_cfg = E2TTS_model_cfg
|
| 490 |
+
print(f"Assuming E2-TTS (UNetT) architecture for {ckpt_path}.")
|
| 491 |
+
elif "F5TTS" in ckpt_path or "DiT" in ckpt_path:
|
| 492 |
+
model_cls = DiT
|
| 493 |
+
model_cfg = F5TTS_model_cfg
|
| 494 |
+
print(f"Assuming F5-TTS (DiT) architecture for {ckpt_path}.")
|
| 495 |
+
else:
|
| 496 |
+
# Default or raise error if model type cannot be inferred
|
| 497 |
+
print(f"Warning: Cannot infer model type from '{ckpt_path}'. Defaulting to DiT/F5TTS.")
|
| 498 |
+
model_cls = DiT
|
| 499 |
+
model_cfg = F5TTS_model_cfg
|
| 500 |
+
|
| 501 |
+
|
| 502 |
+
try:
|
| 503 |
+
# Pass vocab_size needed by load_custom
|
| 504 |
+
ema_model = load_custom(model_cls, model_cfg, ckpt_path, vocab_size=vocab_size, device=device, use_ema=True)
|
| 505 |
+
# Ensure model is using the target runtime dtype
|
| 506 |
+
ema_model = ema_model.to(dtype=dtype)
|
| 507 |
+
print(f"TTS Model loaded successfully ({model_cls.__name__}).")
|
| 508 |
+
except Exception as e:
|
| 509 |
+
print(f"Critical Error: Failed to load TTS model from {ckpt_path}: {e}")
|
| 510 |
+
raise
|
| 511 |
+
|
| 512 |
+
# --- Settings from app.py ---
|
| 513 |
+
target_sample_rate = 24000
|
| 514 |
+
n_mel_channels = model_cfg.get('mel_dim', 100) # Use mel_dim from config if available
|
| 515 |
+
hop_length = 256
|
| 516 |
+
target_rms = 0.1
|
| 517 |
+
|
| 518 |
+
# --- Main Inference Logic ---
|
| 519 |
+
|
| 520 |
+
def infer_batch(ref_audio_tuple, ref_text_ipa, gen_text_ipa_batches,
|
| 521 |
+
ema_model, vocos, tokenizer,
|
| 522 |
+
remove_silence_post, cross_fade_duration,
|
| 523 |
+
nfe_step, cfg_strength, sway_sampling_coef, speed,
|
| 524 |
+
target_sample_rate, hop_length, target_rms, device, dtype):
|
| 525 |
+
"""
|
| 526 |
+
Generates audio batches based on reference and text inputs.
|
| 527 |
+
(Function body remains the same as previous refactored version)
|
| 528 |
+
"""
|
| 529 |
+
audio, sr = ref_audio_tuple
|
| 530 |
+
audio = audio.to(device, dtype=dtype)
|
| 531 |
+
|
| 532 |
+
# Preprocess reference audio (resample, RMS norm)
|
| 533 |
+
if audio.shape[0] > 1: audio = torch.mean(audio, dim=0, keepdim=True)
|
| 534 |
+
current_rms = torch.sqrt(torch.mean(torch.square(audio)))
|
| 535 |
+
rms_applied_factor = 1.0 # Track scaling factor applied to ref
|
| 536 |
+
if current_rms < target_rms and current_rms > 1e-5: # Add safety check for near-silent audio
|
| 537 |
+
print(f"Reference audio RMS ({current_rms:.3f}) below target ({target_rms}). Normalizing.")
|
| 538 |
+
rms_applied_factor = target_rms / current_rms
|
| 539 |
+
audio = audio * rms_applied_factor
|
| 540 |
+
elif current_rms <= 1e-5:
|
| 541 |
+
print("Warning: Reference audio is near silent. Skipping RMS normalization.")
|
| 542 |
+
else:
|
| 543 |
+
print(f"Reference audio RMS ({current_rms:.3f}) >= target ({target_rms}). No normalization.")
|
| 544 |
+
|
| 545 |
+
if sr != target_sample_rate:
|
| 546 |
+
print(f"Resampling reference audio from {sr} Hz to {target_sample_rate} Hz.")
|
| 547 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate).to(device)
|
| 548 |
+
audio = resampler(audio)
|
| 549 |
+
|
| 550 |
+
ref_audio_len_frames = audio.shape[-1] // hop_length
|
| 551 |
+
print(f"Reference audio length: {audio.shape[-1]/target_sample_rate:.2f}s ({ref_audio_len_frames} frames)")
|
| 552 |
+
|
| 553 |
+
generated_waves = []
|
| 554 |
+
spectrograms = []
|
| 555 |
+
|
| 556 |
+
progress_bar = tqdm(gen_text_ipa_batches, desc="Generating Batches")
|
| 557 |
+
for i, gen_text_ipa in enumerate(progress_bar):
|
| 558 |
+
progress_bar.set_postfix({"Batch": f"{i+1}/{len(gen_text_ipa_batches)}"})
|
| 559 |
+
|
| 560 |
+
# Combine reference and generated IPA text
|
| 561 |
+
combined_ipa_text = ref_text_ipa + " " + gen_text_ipa
|
| 562 |
+
# print(f"Batch {i+1} Combined IPA: {combined_ipa_text}") # Debug
|
| 563 |
+
|
| 564 |
+
# Tokenize
|
| 565 |
+
try:
|
| 566 |
+
# Tokenizer expects single string or list of strings
|
| 567 |
+
encoding = tokenizer.encode(combined_ipa_text)
|
| 568 |
+
tokens = encoding.ids
|
| 569 |
+
token_str = encoding.tokens # For logging/debug
|
| 570 |
+
|
| 571 |
+
# --- Model Input Formatting ---
|
| 572 |
+
# Check how your specific model's `sample` method expects the 'text' input.
|
| 573 |
+
# Option 1 (like app.py): String of space-separated tokens
|
| 574 |
+
# token_input_string = ' '.join(map(str, token_str))
|
| 575 |
+
# final_text_list = [token_input_string]
|
| 576 |
+
|
| 577 |
+
# Option 2: List of token IDs (might be more common)
|
| 578 |
+
# final_text_list = [tokens] # List containing the list/tensor of IDs
|
| 579 |
+
|
| 580 |
+
# Option 3: Tensor of token IDs (check model docs)
|
| 581 |
+
# Assuming model expects Option 1 based on app.py:
|
| 582 |
+
token_input_string = ' '.join(map(str, token_str))
|
| 583 |
+
final_text_list = [token_input_string]
|
| 584 |
+
# print(f"Batch {i+1} Input Text List for Model: {final_text_list}")
|
| 585 |
+
|
| 586 |
+
except Exception as e:
|
| 587 |
+
print(f"Error tokenizing batch {i+1}: '{combined_ipa_text}'. Error: {e}")
|
| 588 |
+
continue
|
| 589 |
+
|
| 590 |
+
# Calculate duration
|
| 591 |
+
ref_ipa_len = len(ref_text_ipa)
|
| 592 |
+
gen_ipa_len = len(gen_text_ipa)
|
| 593 |
+
if ref_ipa_len == 0: ref_ipa_len = 1 # Avoid division by zero
|
| 594 |
+
|
| 595 |
+
duration_frames = ref_audio_len_frames + int(((ref_audio_len_frames / ref_ipa_len) * gen_ipa_len) / speed)
|
| 596 |
+
min_duration_frames = max(10, target_sample_rate // hop_length // 4) # Shorter min duration (e.g. 0.25s)
|
| 597 |
+
duration_frames = max(min_duration_frames, duration_frames)
|
| 598 |
+
max_duration_frames = 40 * target_sample_rate // hop_length # Increase max duration slightly?
|
| 599 |
+
if duration_frames > max_duration_frames:
|
| 600 |
+
print(f"Warning: Calculated duration {duration_frames} frames exceeds max {max_duration_frames}. Capping.")
|
| 601 |
+
duration_frames = max_duration_frames
|
| 602 |
+
|
| 603 |
+
# print(f"Batch {i+1}: Duration={duration_frames} frames")
|
| 604 |
+
|
| 605 |
+
# Inference
|
| 606 |
+
try:
|
| 607 |
+
with torch.inference_mode():
|
| 608 |
+
cond_audio = audio.to(ema_model.device, dtype=dtype) # Match model device/dtype
|
| 609 |
+
# print(f"Model device: {ema_model.device}, Cond audio device: {cond_audio.device}, dtype: {cond_audio.dtype}")
|
| 610 |
+
|
| 611 |
+
generated_mel, _ = ema_model.sample(
|
| 612 |
+
cond=cond_audio,
|
| 613 |
+
text=final_text_list, # Pass formatted text input
|
| 614 |
+
duration=duration_frames,
|
| 615 |
+
steps=nfe_step,
|
| 616 |
+
cfg_strength=cfg_strength,
|
| 617 |
+
sway_sampling_coef=sway_sampling_coef,
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
# Process generated mel
|
| 621 |
+
generated_mel = generated_mel.to(device, dtype=dtype) # Back to main device/dtype
|
| 622 |
+
generated_mel = generated_mel[:, ref_audio_len_frames:, :]
|
| 623 |
+
generated_mel_spec = rearrange(generated_mel, "1 n d -> 1 d n")
|
| 624 |
+
|
| 625 |
+
# Vocoding
|
| 626 |
+
# Vocos usually expects float32
|
| 627 |
+
vocos_input_mel = generated_mel_spec.to(vocos.device, dtype=torch.float32)
|
| 628 |
+
generated_wave = vocos.decode(vocos_input_mel)
|
| 629 |
+
generated_wave = generated_wave.to(device, dtype=torch.float32)
|
| 630 |
+
|
| 631 |
+
# Adjust RMS (Scale generated audio by the same factor applied to reference)
|
| 632 |
+
generated_wave = generated_wave * rms_applied_factor
|
| 633 |
+
|
| 634 |
+
# Convert to numpy
|
| 635 |
+
generated_wave_np = generated_wave.squeeze().cpu().numpy()
|
| 636 |
+
generated_waves.append(generated_wave_np)
|
| 637 |
+
spectrograms.append(generated_mel_spec[0].cpu().to(torch.float32).numpy())
|
| 638 |
+
|
| 639 |
+
except Exception as e:
|
| 640 |
+
logging.exception(f"Error during inference/processing for batch {i+1}:") # Log traceback
|
| 641 |
+
print(f"Error details: {e}")
|
| 642 |
+
continue
|
| 643 |
+
|
| 644 |
+
if not generated_waves:
|
| 645 |
+
print("No audio waves were generated.")
|
| 646 |
+
return None, None
|
| 647 |
+
|
| 648 |
+
# Combine batches
|
| 649 |
+
print(f"Combining {len(generated_waves)} generated batches...")
|
| 650 |
+
if cross_fade_duration <= 0 or len(generated_waves) == 1:
|
| 651 |
+
final_wave = np.concatenate(generated_waves)
|
| 652 |
+
else:
|
| 653 |
+
# (Cross-fading logic remains the same)
|
| 654 |
+
final_wave = generated_waves[0]
|
| 655 |
+
for i in range(1, len(generated_waves)):
|
| 656 |
+
prev_wave = final_wave; next_wave = generated_waves[i]
|
| 657 |
+
cf_samples = min(int(cross_fade_duration * target_sample_rate), len(prev_wave), len(next_wave))
|
| 658 |
+
if cf_samples <= 0: final_wave = np.concatenate([prev_wave, next_wave]); continue
|
| 659 |
+
p_olap = prev_wave[-cf_samples:]; n_olap = next_wave[:cf_samples]
|
| 660 |
+
f_out = np.linspace(1, 0, cf_samples, dtype=p_olap.dtype); f_in = np.linspace(0, 1, cf_samples, dtype=n_olap.dtype)
|
| 661 |
+
cf_olap = p_olap * f_out + n_olap * f_in
|
| 662 |
+
final_wave = np.concatenate([prev_wave[:-cf_samples], cf_olap, next_wave[cf_samples:]])
|
| 663 |
+
print(f"Applied cross-fade of {cross_fade_duration:.2f}s between batches.")
|
| 664 |
+
|
| 665 |
+
# Optional: Remove silence post-combination
|
| 666 |
+
if remove_silence_post:
|
| 667 |
+
print("Removing silence from final output...")
|
| 668 |
+
try:
|
| 669 |
+
final_wave_float32 = final_wave.astype(np.float32)
|
| 670 |
+
with tempfile.NamedTemporaryFile(delete=True, suffix=".wav") as tmp_wav:
|
| 671 |
+
sf.write(tmp_wav.name, final_wave_float32, target_sample_rate)
|
| 672 |
+
aseg = AudioSegment.from_file(tmp_wav.name)
|
| 673 |
+
non_silent_segs = silence.split_on_silence(
|
| 674 |
+
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500
|
| 675 |
+
)
|
| 676 |
+
if not non_silent_segs:
|
| 677 |
+
print("Warning: Silence removal resulted in empty audio. Keeping original.")
|
| 678 |
+
else:
|
| 679 |
+
non_silent_wave = sum(non_silent_segs, AudioSegment.silent(duration=0))
|
| 680 |
+
non_silent_wave.export(tmp_wav.name, format="wav")
|
| 681 |
+
final_wave_tensor, _ = torchaudio.load(tmp_wav.name)
|
| 682 |
+
final_wave = final_wave_tensor.squeeze().cpu().numpy()
|
| 683 |
+
print("Silence removal applied.")
|
| 684 |
+
except Exception as e:
|
| 685 |
+
print(f"Warning: Failed to remove silence: {e}. Using original.")
|
| 686 |
+
|
| 687 |
+
# Combine spectrograms
|
| 688 |
+
print("Combining spectrograms...")
|
| 689 |
+
try:
|
| 690 |
+
if spectrograms:
|
| 691 |
+
combined_spectrogram = np.concatenate(spectrograms, axis=1)
|
| 692 |
+
else:
|
| 693 |
+
combined_spectrogram = None
|
| 694 |
+
except ValueError as e:
|
| 695 |
+
print(f"Warning: Could not concatenate spectrograms: {e}. Skipping.")
|
| 696 |
+
combined_spectrogram = None
|
| 697 |
+
|
| 698 |
+
return final_wave, combined_spectrogram
|
| 699 |
+
|
| 700 |
+
|
| 701 |
+
def main_infer(ref_audio_orig_path, ref_text_input, gen_text_full,
|
| 702 |
+
ema_model, vocos, tokenizer, pipe_asr, # Loaded models/utils
|
| 703 |
+
ref_language, language, # Languages
|
| 704 |
+
speed, nfe_step, cfg_strength, sway_sampling_coef, # Sampling params
|
| 705 |
+
remove_silence_flag, cross_fade_duration, # Postprocessing
|
| 706 |
+
target_sample_rate, hop_length, target_rms, # Audio params
|
| 707 |
+
device, dtype): # System params
|
| 708 |
+
"""
|
| 709 |
+
Main inference function coordinating preprocessing, batching, and generation.
|
| 710 |
+
(Function body remains the same as previous refactored version)
|
| 711 |
+
"""
|
| 712 |
+
print(f"Starting inference for text: '{gen_text_full[:100]}...'")
|
| 713 |
+
|
| 714 |
+
# --- Reference Audio Preprocessing ---
|
| 715 |
+
print("Processing reference audio...")
|
| 716 |
+
processed_ref_path = None
|
| 717 |
+
try:
|
| 718 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_ref_wav:
|
| 719 |
+
processed_ref_path = temp_ref_wav.name # Store path for potential use
|
| 720 |
+
aseg = AudioSegment.from_file(ref_audio_orig_path)
|
| 721 |
+
print(f"Original ref duration: {len(aseg)/1000:.2f}s")
|
| 722 |
+
|
| 723 |
+
# Edge silence removal + padding
|
| 724 |
+
aseg = remove_silence_edges(aseg)
|
| 725 |
+
aseg += AudioSegment.silent(duration=150)
|
| 726 |
+
|
| 727 |
+
# Split/recombine on silence
|
| 728 |
+
non_silent_segs = silence.split_on_silence(
|
| 729 |
+
aseg, min_silence_len=700, silence_thresh=-50, keep_silence=700
|
| 730 |
+
)
|
| 731 |
+
if non_silent_segs:
|
| 732 |
+
aseg = sum(non_silent_segs, AudioSegment.silent(duration=0)) # Use sum for conciseness
|
| 733 |
+
else:
|
| 734 |
+
print("Warning: Silence splitting/recombining resulted in empty audio. Using edge-trimmed.")
|
| 735 |
+
|
| 736 |
+
# Clip to 10s
|
| 737 |
+
max_ref_duration_ms = 10000
|
| 738 |
+
if len(aseg) > max_ref_duration_ms:
|
| 739 |
+
print(f"Reference audio exceeds {max_ref_duration_ms/1000}s. Clipping...")
|
| 740 |
+
aseg = aseg[:max_ref_duration_ms]
|
| 741 |
+
|
| 742 |
+
aseg.export(processed_ref_path, format="wav")
|
| 743 |
+
print(f"Processed ref duration: {len(aseg)/1000:.2f}s. Saved to temp file: {processed_ref_path}")
|
| 744 |
+
|
| 745 |
+
# Load processed audio tensor
|
| 746 |
+
ref_audio_tensor, sr_ref = torchaudio.load(processed_ref_path)
|
| 747 |
+
|
| 748 |
+
except Exception as e:
|
| 749 |
+
print(f"Error processing reference audio {ref_audio_orig_path}: {e}")
|
| 750 |
+
if processed_ref_path and Path(processed_ref_path).exists():
|
| 751 |
+
Path(processed_ref_path).unlink() # Clean up temp file on error
|
| 752 |
+
raise
|
| 753 |
+
|
| 754 |
+
# --- Reference Text Handling ---
|
| 755 |
+
ref_text_processed = ""
|
| 756 |
+
if not ref_text_input or ref_text_input.strip() == "":
|
| 757 |
+
print("No reference text provided. Transcribing reference audio...")
|
| 758 |
+
if pipe_asr is None:
|
| 759 |
+
raise ValueError("Whisper ASR model not loaded. Cannot transcribe. Please provide --ref_text.")
|
| 760 |
+
if not processed_ref_path:
|
| 761 |
+
raise ValueError("Processed reference audio path is missing for transcription.")
|
| 762 |
+
try:
|
| 763 |
+
# Ensure Whisper input dtype matches its loaded dtype
|
| 764 |
+
whisper_input_dtype = pipe_asr.model.dtype
|
| 765 |
+
|
| 766 |
+
# Load audio specifically for Whisper if dtypes differ significantly
|
| 767 |
+
# Or rely on pipeline handling. Assuming pipeline handles it for now.
|
| 768 |
+
print(f"Transcribing: {processed_ref_path}")
|
| 769 |
+
transcription_result = pipe_asr(
|
| 770 |
+
processed_ref_path,
|
| 771 |
+
chunk_length_s=15,
|
| 772 |
+
batch_size=8, # Smaller batch size for CLI
|
| 773 |
+
generate_kwargs={"task": "transcribe", "language": None}, # Whisper language detection
|
| 774 |
+
return_timestamps=False,
|
| 775 |
+
)
|
| 776 |
+
ref_text_processed = transcription_result["text"].strip()
|
| 777 |
+
print(f"Transcription finished: '{ref_text_processed}'")
|
| 778 |
+
if not ref_text_processed:
|
| 779 |
+
print("Warning: Transcription resulted in empty text. Using placeholder.")
|
| 780 |
+
ref_text_processed = "Reference audio"
|
| 781 |
+
except Exception as e:
|
| 782 |
+
logging.exception("Error during transcription:")
|
| 783 |
+
raise ValueError("Transcription failed. Please provide --ref_text.")
|
| 784 |
+
else:
|
| 785 |
+
print("Using provided reference text.")
|
| 786 |
+
ref_text_processed = ref_text_input
|
| 787 |
+
|
| 788 |
+
# Clean up the temporary processed reference audio file
|
| 789 |
+
if processed_ref_path and Path(processed_ref_path).exists():
|
| 790 |
+
try:
|
| 791 |
+
Path(processed_ref_path).unlink()
|
| 792 |
+
# print(f"Cleaned up temp ref file: {processed_ref_path}") # Debug
|
| 793 |
+
except OSError as e:
|
| 794 |
+
print(f"Warning: Could not delete temp ref file {processed_ref_path}: {e}")
|
| 795 |
+
|
| 796 |
+
|
| 797 |
+
# Ensure reference text ends with ". "
|
| 798 |
+
if not ref_text_processed.endswith(". "):
|
| 799 |
+
ref_text_processed = ref_text_processed.rstrip('. ') + ". " # More robust way
|
| 800 |
+
print(f"Final Reference Text: '{ref_text_processed}'")
|
| 801 |
+
|
| 802 |
+
# --- Phonemize Reference Text ---
|
| 803 |
+
print(f"Phonemizing reference text with language: {ref_language}")
|
| 804 |
+
ref_text_ipa = text_to_ipa(ref_text_processed, language=ref_language)
|
| 805 |
+
if not ref_text_ipa: raise ValueError("Reference text phonemization failed.")
|
| 806 |
+
|
| 807 |
+
# --- Chunk and Phonemize Generation Text ---
|
| 808 |
+
ref_audio_duration_sec = ref_audio_tensor.shape[-1] / sr_ref if sr_ref > 0 else 1.0
|
| 809 |
+
if ref_audio_duration_sec <= 0: ref_audio_duration_sec = 1.0
|
| 810 |
+
chars_per_sec = len(ref_text_processed.encode('utf-8')) / ref_audio_duration_sec if ref_audio_duration_sec > 0 else 10.0
|
| 811 |
+
if chars_per_sec <= 0: chars_per_sec = 10.0
|
| 812 |
+
target_chunk_duration_sec = max(5.0, 20.0 - ref_audio_duration_sec)
|
| 813 |
+
max_chars = int(chars_per_sec * target_chunk_duration_sec)
|
| 814 |
+
|
| 815 |
+
print(f"Ref duration: {ref_audio_duration_sec:.2f}s => Calculated max_chars/batch: {max_chars}")
|
| 816 |
+
gen_text_batches_plain = chunk_text(gen_text_full, max_chars=max_chars)
|
| 817 |
+
if not gen_text_batches_plain: raise ValueError("Text chunking resulted in zero batches.")
|
| 818 |
+
print(f"Split generation text into {len(gen_text_batches_plain)} batches.")
|
| 819 |
+
|
| 820 |
+
print(f"Phonemizing generation text batches with language: {language}")
|
| 821 |
+
gen_text_ipa_batches = []
|
| 822 |
+
for i, batch_text in enumerate(gen_text_batches_plain):
|
| 823 |
+
# print(f" Phonemizing batch {i+1}/{len(gen_text_batches_plain)}...") # Verbose
|
| 824 |
+
batch_ipa = text_to_ipa(batch_text, language=language)
|
| 825 |
+
if batch_ipa: gen_text_ipa_batches.append(batch_ipa)
|
| 826 |
+
else: print(f"Warning: Skipping batch {i+1} due to phonemization failure.")
|
| 827 |
+
|
| 828 |
+
if not gen_text_ipa_batches: raise ValueError("Phonemization failed for all generation text batches.")
|
| 829 |
+
|
| 830 |
+
# --- Run Batched Inference ---
|
| 831 |
+
print(f"Starting batch inference process ({len(gen_text_ipa_batches)} batches)...")
|
| 832 |
+
final_wave, combined_spectrogram = infer_batch(
|
| 833 |
+
(ref_audio_tensor, sr_ref), ref_text_ipa, gen_text_ipa_batches,
|
| 834 |
+
ema_model, vocos, tokenizer,
|
| 835 |
+
remove_silence_flag, cross_fade_duration,
|
| 836 |
+
nfe_step, cfg_strength, sway_sampling_coef, speed,
|
| 837 |
+
target_sample_rate, hop_length, target_rms,
|
| 838 |
+
device, dtype
|
| 839 |
+
)
|
| 840 |
+
|
| 841 |
+
return final_wave, combined_spectrogram
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
# --- Execution ---
|
| 845 |
+
if __name__ == "__main__":
|
| 846 |
+
# Setup logging
|
| 847 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 848 |
+
|
| 849 |
+
try:
|
| 850 |
+
final_wave_np, combined_spectrogram_np = main_infer(
|
| 851 |
+
ref_audio_path, ref_text, gen_text,
|
| 852 |
+
ema_model, vocos, tokenizer, pipe,
|
| 853 |
+
ref_language, language,
|
| 854 |
+
speed, nfe_step, cfg_strength, sway_sampling_coef,
|
| 855 |
+
remove_silence_flag, cross_fade_duration,
|
| 856 |
+
target_sample_rate, hop_length, target_rms,
|
| 857 |
+
device, dtype
|
| 858 |
+
)
|
| 859 |
+
|
| 860 |
+
# --- Save Outputs ---
|
| 861 |
+
output_saved = False
|
| 862 |
+
if final_wave_np is not None and len(final_wave_np) > 0:
|
| 863 |
+
print(f"Saving final audio ({len(final_wave_np)/target_sample_rate:.2f}s) to {wave_path}...")
|
| 864 |
+
final_wave_float32 = final_wave_np.astype(np.float32) # Ensure float32 for sf
|
| 865 |
+
sf.write(str(wave_path), final_wave_float32, target_sample_rate)
|
| 866 |
+
print("Audio saved successfully.")
|
| 867 |
+
output_saved = True
|
| 868 |
+
else:
|
| 869 |
+
print("Inference did not produce a valid audio wave.")
|
| 870 |
+
|
| 871 |
+
if combined_spectrogram_np is not None:
|
| 872 |
+
print(f"Saving combined spectrogram to {spectrogram_path}...")
|
| 873 |
+
save_spectrogram(combined_spectrogram_np, str(spectrogram_path))
|
| 874 |
+
print("Spectrogram saved successfully.")
|
| 875 |
+
output_saved = True
|
| 876 |
+
# else: # No need to print if spectrogram was None
|
| 877 |
+
# print("Spectrogram generation failed or was skipped.")
|
| 878 |
+
|
| 879 |
+
if not output_saved:
|
| 880 |
+
print("No output files were generated.")
|
| 881 |
+
|
| 882 |
+
except FileNotFoundError as e:
|
| 883 |
+
logging.error(f"File not found: {e}")
|
| 884 |
+
print(f"\nError: A required file was not found. Please check paths. Details: {e}")
|
| 885 |
+
exit(1)
|
| 886 |
+
except ValueError as e:
|
| 887 |
+
logging.error(f"Value error: {e}")
|
| 888 |
+
print(f"\nError: An invalid value or configuration was encountered. Details: {e}")
|
| 889 |
+
exit(1)
|
| 890 |
+
except Exception as e:
|
| 891 |
+
logging.exception("An unexpected error occurred during inference:") # Log traceback
|
| 892 |
+
print(f"\nAn unexpected error occurred: {e}")
|
| 893 |
+
exit(1)
|
| 894 |
+
|
| 895 |
+
print("\nInference completed.")
|