Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,32 @@
|
|
| 1 |
# =============================================================
|
| 2 |
-
#
|
| 3 |
# =============================================================
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
-
#
|
| 7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
|
| 9 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
| 10 |
os.environ["HF_DATASETS_CACHE"] = "/tmp/hf_cache"
|
| 11 |
os.environ["TORCH_HOME"] = "/tmp/torch_home"
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
#
|
| 15 |
-
#
|
| 16 |
import spaces
|
| 17 |
import torch
|
| 18 |
import numpy as np
|
|
@@ -22,8 +36,6 @@ import tempfile
|
|
| 22 |
import requests
|
| 23 |
import logging
|
| 24 |
from PIL import Image
|
| 25 |
-
import shutil
|
| 26 |
-
import pathlib
|
| 27 |
|
| 28 |
import gradio as gr
|
| 29 |
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
|
@@ -36,9 +48,9 @@ import aoti
|
|
| 36 |
logging.basicConfig(level=logging.INFO)
|
| 37 |
logger = logging.getLogger(__name__)
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
#
|
| 41 |
-
#
|
| 42 |
MAX_DIM = 832
|
| 43 |
MIN_DIM = 480
|
| 44 |
SQUARE_DIM = 640
|
|
@@ -51,13 +63,14 @@ MAX_FRAMES_MODEL = 80
|
|
| 51 |
|
| 52 |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
|
| 53 |
default_negative_prompt = (
|
| 54 |
-
"colorful tones, overexposed, static, unclear details, subtitles, style, artwork, painting, screen,
|
| 55 |
-
"
|
| 56 |
-
"
|
|
|
|
| 57 |
)
|
| 58 |
|
| 59 |
# ------------------------------------------------------------
|
| 60 |
-
#
|
| 61 |
# ------------------------------------------------------------
|
| 62 |
def translate_albanian_to_english(text: str) -> str:
|
| 63 |
if not text.strip():
|
|
@@ -81,23 +94,7 @@ def translate_albanian_to_english(text: str) -> str:
|
|
| 81 |
return text
|
| 82 |
|
| 83 |
# ------------------------------------------------------------
|
| 84 |
-
#
|
| 85 |
-
# ------------------------------------------------------------
|
| 86 |
-
def _clean_existing_cache():
|
| 87 |
-
for p in [
|
| 88 |
-
pathlib.Path.home() / ".cache",
|
| 89 |
-
pathlib.Path("/workspace") / ".cache",
|
| 90 |
-
pathlib.Path("/tmp") / "hf_cache",
|
| 91 |
-
pathlib.Path("/tmp") / "torch_home",
|
| 92 |
-
]:
|
| 93 |
-
if p.exists():
|
| 94 |
-
logger.info(f"Removing existing cache folder: {p}")
|
| 95 |
-
shutil.rmtree(p, ignore_errors=True)
|
| 96 |
-
|
| 97 |
-
_clean_existing_cache()
|
| 98 |
-
|
| 99 |
-
# ------------------------------------------------------------
|
| 100 |
-
# 6️⃣ MODEL LOADING (all caches forced to /tmp)
|
| 101 |
# ------------------------------------------------------------
|
| 102 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 103 |
"Wan-AI/Wan2.2-I2V-A14B-Diffusers",
|
|
@@ -149,42 +146,36 @@ aoti.aoti_blocks_load(pipe.transformer, "zerogpu-aoti/Wan2", variant="fp8da")
|
|
| 149 |
aoti.aoti_blocks_load(pipe.transformer_2, "zerogpu-aoti/Wan2", variant="fp8da")
|
| 150 |
|
| 151 |
# ------------------------------------------------------------
|
| 152 |
-
#
|
| 153 |
# ------------------------------------------------------------
|
| 154 |
def resize_image(image: Image.Image) -> Image.Image:
|
| 155 |
"""Resize / crop the input image so the model receives a valid size."""
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
if width == height:
|
| 159 |
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
|
| 165 |
img = image
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
crop_h = int(round(width / MIN_ASPECT_RATIO))
|
| 175 |
-
top = (height - crop_h) // 2
|
| 176 |
-
img = image.crop((0, top, width, top + crop_h))
|
| 177 |
else:
|
| 178 |
-
|
| 179 |
-
if width > height: # landscape
|
| 180 |
target_w = MAX_DIM
|
| 181 |
-
target_h = int(round(target_w /
|
| 182 |
-
else:
|
| 183 |
target_h = MAX_DIM
|
| 184 |
-
target_w = int(round(target_h *
|
| 185 |
img = image
|
| 186 |
|
| 187 |
-
# Round to the nearest multiple of MULTIPLE_OF and clamp
|
| 188 |
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
|
| 189 |
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
|
| 190 |
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
|
|
@@ -194,7 +185,7 @@ def resize_image(image: Image.Image) -> Image.Image:
|
|
| 194 |
|
| 195 |
|
| 196 |
def get_num_frames(duration_seconds: float) -> int:
|
| 197 |
-
"""Number of frames
|
| 198 |
return 1 + int(
|
| 199 |
np.clip(
|
| 200 |
int(round(duration_seconds * FIXED_FPS)),
|
|
@@ -214,26 +205,24 @@ def get_duration(
|
|
| 214 |
guidance_scale_2,
|
| 215 |
seed,
|
| 216 |
randomize_seed,
|
| 217 |
-
progress, #
|
| 218 |
):
|
| 219 |
"""
|
| 220 |
-
Rough estimate of
|
| 221 |
-
|
| 222 |
"""
|
| 223 |
-
|
| 224 |
-
|
| 225 |
|
| 226 |
w, h = resize_image(input_image).size
|
| 227 |
frames = get_num_frames(duration_seconds)
|
| 228 |
-
factor = frames * w * h /
|
| 229 |
-
|
| 230 |
-
est = 10 + int(steps) *
|
| 231 |
-
|
| 232 |
-
# Never block the GPU > 30 s
|
| 233 |
-
return min(est, 30)
|
| 234 |
|
| 235 |
# ------------------------------------------------------------
|
| 236 |
-
#
|
| 237 |
# ------------------------------------------------------------
|
| 238 |
@spaces.GPU(duration=get_duration)
|
| 239 |
def generate_video(
|
|
@@ -248,25 +237,19 @@ def generate_video(
|
|
| 248 |
randomize_seed=False,
|
| 249 |
progress=gr.Progress(track_tqdm=True),
|
| 250 |
):
|
| 251 |
-
"""
|
| 252 |
if input_image is None:
|
| 253 |
raise gr.Error("Please upload an input image.")
|
| 254 |
|
| 255 |
-
#
|
| 256 |
-
# Prompt translation (Albanian → English)
|
| 257 |
-
# -----------------------------------------------------------------
|
| 258 |
prompt = translate_albanian_to_english(prompt_input)
|
| 259 |
|
| 260 |
-
#
|
| 261 |
-
# Prepare model inputs
|
| 262 |
-
# -----------------------------------------------------------------
|
| 263 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 264 |
resized = resize_image(input_image)
|
| 265 |
num_frames = get_num_frames(duration_seconds)
|
| 266 |
|
| 267 |
-
#
|
| 268 |
-
# Model inference
|
| 269 |
-
# -----------------------------------------------------------------
|
| 270 |
out = pipe(
|
| 271 |
image=resized,
|
| 272 |
prompt=prompt,
|
|
@@ -281,22 +264,16 @@ def generate_video(
|
|
| 281 |
)
|
| 282 |
frames = out.frames[0]
|
| 283 |
|
| 284 |
-
#
|
| 285 |
-
# Write temporary MP4 (still inside /tmp, will be removed later)
|
| 286 |
-
# -----------------------------------------------------------------
|
| 287 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
|
| 288 |
video_path = tmp.name
|
| 289 |
export_to_video(frames, video_path, fps=FIXED_FPS)
|
| 290 |
|
| 291 |
-
#
|
| 292 |
-
# Unload AoT blocks – they occupy several GB on disk
|
| 293 |
-
# -----------------------------------------------------------------
|
| 294 |
aoti.aoti_blocks_unload(pipe.transformer)
|
| 295 |
aoti.aoti_blocks_unload(pipe.transformer_2)
|
| 296 |
|
| 297 |
-
#
|
| 298 |
-
# GPU cleanup
|
| 299 |
-
# -----------------------------------------------------------------
|
| 300 |
gc.collect()
|
| 301 |
torch.cuda.empty_cache()
|
| 302 |
|
|
@@ -304,7 +281,7 @@ def generate_video(
|
|
| 304 |
|
| 305 |
|
| 306 |
# ------------------------------------------------------------
|
| 307 |
-
#
|
| 308 |
# ------------------------------------------------------------
|
| 309 |
with gr.Blocks(
|
| 310 |
css="""
|
|
@@ -559,8 +536,8 @@ footer,.gr-button-secondary{
|
|
| 559 |
.gr-group{
|
| 560 |
background:#000!important;
|
| 561 |
border:none!important;
|
| 562 |
-
width:100
|
| 563 |
-
max-width:100vw!important;
|
| 564 |
}
|
| 565 |
@media (max-width:768px){
|
| 566 |
h1{font-size:4rem;}
|
|
@@ -583,19 +560,19 @@ footer,.gr-button-secondary{
|
|
| 583 |
) as demo:
|
| 584 |
|
| 585 |
# -------------------------------------------------
|
| 586 |
-
# 500‑ERROR GUARD – same unique
|
| 587 |
# -------------------------------------------------
|
| 588 |
gr.HTML("""
|
| 589 |
<script>
|
| 590 |
if (!window.location.pathname.includes('b9v0c1x2z3a4s5d6f7g8h9j0k1l2m3n4b5v6c7x8z9a0s1d2f3g4h5j6k7l8m9n0')) {
|
| 591 |
-
document.body.innerHTML = '<h1 style="color:#ef4444;font-family:Orbitron,sans-serif;text-align:center;margin-top:
|
| 592 |
-
throw new Error('
|
| 593 |
}
|
| 594 |
</script>
|
| 595 |
""")
|
| 596 |
|
| 597 |
# -------------------------------------------------
|
| 598 |
-
# UI layout – identical
|
| 599 |
# -------------------------------------------------
|
| 600 |
with gr.Row(elem_id="general_items"):
|
| 601 |
gr.Markdown("# ")
|
|
@@ -637,6 +614,14 @@ footer,.gr-button-secondary{
|
|
| 637 |
# -------------------------------------------------
|
| 638 |
# Wiring – order must match generate_video signature
|
| 639 |
# -------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 640 |
generate_btn.click(
|
| 641 |
fn=generate_video,
|
| 642 |
inputs=[
|
|
@@ -649,13 +634,14 @@ footer,.gr-button-secondary{
|
|
| 649 |
gr.State(value=1.5), # guidance_scale_2
|
| 650 |
gr.State(value=42), # seed
|
| 651 |
gr.State(value=True), # randomize_seed
|
| 652 |
-
# progress is injected
|
| 653 |
],
|
| 654 |
-
outputs=[output_video, gr.State(value=42)],
|
|
|
|
| 655 |
)
|
| 656 |
|
| 657 |
# ------------------------------------------------------------
|
| 658 |
-
#
|
| 659 |
# ------------------------------------------------------------
|
| 660 |
if __name__ == "__main__":
|
| 661 |
demo.queue().launch(share=True)
|
|
|
|
| 1 |
# =============================================================
|
| 2 |
+
# 0️⃣ FORCE ALL CACHES TO EPHEMERAL /tmp (DO NOT COUNT TO 150 GB)
|
| 3 |
# =============================================================
|
| 4 |
+
import os, shutil, pathlib
|
| 5 |
+
# -----------------------------------------------------------------
|
| 6 |
+
# Clean any leftover cache that may already be on the persistent volume.
|
| 7 |
+
# This runs **once** at container start, before any import that touches HF.
|
| 8 |
+
# -----------------------------------------------------------------
|
| 9 |
+
for p in [
|
| 10 |
+
pathlib.Path.home() / ".cache",
|
| 11 |
+
pathlib.Path("/workspace") / ".cache",
|
| 12 |
+
pathlib.Path("/tmp") / "hf_cache",
|
| 13 |
+
pathlib.Path("/tmp") / "torch_home",
|
| 14 |
+
]:
|
| 15 |
+
if p.exists():
|
| 16 |
+
shutil.rmtree(p, ignore_errors=True)
|
| 17 |
+
|
| 18 |
+
# -----------------------------------------------------------------
|
| 19 |
+
# Point every HF / torch cache to /tmp (which is a RAM‑disk and is
|
| 20 |
+
# NOT counted against the Space’s disk quota).
|
| 21 |
+
# -----------------------------------------------------------------
|
| 22 |
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
|
| 23 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
|
| 24 |
os.environ["HF_DATASETS_CACHE"] = "/tmp/hf_cache"
|
| 25 |
os.environ["TORCH_HOME"] = "/tmp/torch_home"
|
| 26 |
|
| 27 |
+
# =============================================================
|
| 28 |
+
# 1️⃣ IMPORTS
|
| 29 |
+
# =============================================================
|
| 30 |
import spaces
|
| 31 |
import torch
|
| 32 |
import numpy as np
|
|
|
|
| 36 |
import requests
|
| 37 |
import logging
|
| 38 |
from PIL import Image
|
|
|
|
|
|
|
| 39 |
|
| 40 |
import gradio as gr
|
| 41 |
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
|
|
|
| 48 |
logging.basicConfig(level=logging.INFO)
|
| 49 |
logger = logging.getLogger(__name__)
|
| 50 |
|
| 51 |
+
# =============================================================
|
| 52 |
+
# 2️⃣ CONFIG
|
| 53 |
+
# =============================================================
|
| 54 |
MAX_DIM = 832
|
| 55 |
MIN_DIM = 480
|
| 56 |
SQUARE_DIM = 640
|
|
|
|
| 63 |
|
| 64 |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
|
| 65 |
default_negative_prompt = (
|
| 66 |
+
"colorful tones, overexposed, static, unclear details, subtitles, style, artwork, painting, screen, "
|
| 67 |
+
"still, overall gray, worst quality, low quality, JPEG compression artifacts, ugly, deformed, "
|
| 68 |
+
"extra fingers, poorly drawn hands, poorly drawn face, deformed, mutated, deformed limbs, "
|
| 69 |
+
"fused fingers, still screen, messy background, three legs, many people in background, walking backwards"
|
| 70 |
)
|
| 71 |
|
| 72 |
# ------------------------------------------------------------
|
| 73 |
+
# 3️⃣ TRANSLATOR (Albanian → English) – unchanged
|
| 74 |
# ------------------------------------------------------------
|
| 75 |
def translate_albanian_to_english(text: str) -> str:
|
| 76 |
if not text.strip():
|
|
|
|
| 94 |
return text
|
| 95 |
|
| 96 |
# ------------------------------------------------------------
|
| 97 |
+
# 4️⃣ MODEL LOADING (all caches forced to /tmp)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
# ------------------------------------------------------------
|
| 99 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 100 |
"Wan-AI/Wan2.2-I2V-A14B-Diffusers",
|
|
|
|
| 146 |
aoti.aoti_blocks_load(pipe.transformer_2, "zerogpu-aoti/Wan2", variant="fp8da")
|
| 147 |
|
| 148 |
# ------------------------------------------------------------
|
| 149 |
+
# 5️⃣ HELPER FUNCTIONS (resize, frame count, GPU‑time estimate)
|
| 150 |
# ------------------------------------------------------------
|
| 151 |
def resize_image(image: Image.Image) -> Image.Image:
|
| 152 |
"""Resize / crop the input image so the model receives a valid size."""
|
| 153 |
+
w, h = image.size
|
| 154 |
+
if w == h:
|
|
|
|
| 155 |
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
|
| 156 |
|
| 157 |
+
aspect = w / h
|
| 158 |
+
MAX_ASPECT = MAX_DIM / MIN_DIM
|
| 159 |
+
MIN_ASPECT = MIN_DIM / MAX_DIM
|
| 160 |
|
| 161 |
img = image
|
| 162 |
+
if aspect > MAX_ASPECT: # very wide → crop width
|
| 163 |
+
crop_w = int(round(h * MAX_ASPECT))
|
| 164 |
+
left = (w - crop_w) // 2
|
| 165 |
+
img = image.crop((left, 0, left + crop_w, h))
|
| 166 |
+
elif aspect < MIN_ASPECT: # very tall → crop height
|
| 167 |
+
crop_h = int(round(w / MIN_ASPECT))
|
| 168 |
+
top = (h - crop_h) // 2
|
| 169 |
+
img = image.crop((0, top, w, top + crop_h))
|
|
|
|
|
|
|
|
|
|
| 170 |
else:
|
| 171 |
+
if w > h: # landscape
|
|
|
|
| 172 |
target_w = MAX_DIM
|
| 173 |
+
target_h = int(round(target_w / aspect))
|
| 174 |
+
else: # portrait
|
| 175 |
target_h = MAX_DIM
|
| 176 |
+
target_w = int(round(target_h * aspect))
|
| 177 |
img = image
|
| 178 |
|
|
|
|
| 179 |
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
|
| 180 |
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
|
| 181 |
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
|
|
|
|
| 185 |
|
| 186 |
|
| 187 |
def get_num_frames(duration_seconds: float) -> int:
|
| 188 |
+
"""Number of frames for the requested duration."""
|
| 189 |
return 1 + int(
|
| 190 |
np.clip(
|
| 191 |
int(round(duration_seconds * FIXED_FPS)),
|
|
|
|
| 205 |
guidance_scale_2,
|
| 206 |
seed,
|
| 207 |
randomize_seed,
|
| 208 |
+
progress, # <- required by @spaces.GPU
|
| 209 |
):
|
| 210 |
"""
|
| 211 |
+
Rough estimate of the GPU run‑time.
|
| 212 |
+
The @spaces.GPU decorator will cut the job at 30 s.
|
| 213 |
"""
|
| 214 |
+
BASE = 81 * 832 * 624 # reference size used by the original demo
|
| 215 |
+
BASE_STEP = 15
|
| 216 |
|
| 217 |
w, h = resize_image(input_image).size
|
| 218 |
frames = get_num_frames(duration_seconds)
|
| 219 |
+
factor = frames * w * h / BASE
|
| 220 |
+
step_time = BASE_STEP * factor ** 1.5
|
| 221 |
+
est = 10 + int(steps) * step_time
|
| 222 |
+
return min(est, 30) # never exceed the 30‑second safety cap
|
|
|
|
|
|
|
| 223 |
|
| 224 |
# ------------------------------------------------------------
|
| 225 |
+
# 6️⃣ GENERATION FUNCTION
|
| 226 |
# ------------------------------------------------------------
|
| 227 |
@spaces.GPU(duration=get_duration)
|
| 228 |
def generate_video(
|
|
|
|
| 237 |
randomize_seed=False,
|
| 238 |
progress=gr.Progress(track_tqdm=True),
|
| 239 |
):
|
| 240 |
+
"""Run the model → return a temporary MP4 path and the seed used."""
|
| 241 |
if input_image is None:
|
| 242 |
raise gr.Error("Please upload an input image.")
|
| 243 |
|
| 244 |
+
# ---- translate prompt (Albanian → English) -----------------
|
|
|
|
|
|
|
| 245 |
prompt = translate_albanian_to_english(prompt_input)
|
| 246 |
|
| 247 |
+
# ---- prepare inputs ----------------------------------------
|
|
|
|
|
|
|
| 248 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 249 |
resized = resize_image(input_image)
|
| 250 |
num_frames = get_num_frames(duration_seconds)
|
| 251 |
|
| 252 |
+
# ---- model inference ----------------------------------------
|
|
|
|
|
|
|
| 253 |
out = pipe(
|
| 254 |
image=resized,
|
| 255 |
prompt=prompt,
|
|
|
|
| 264 |
)
|
| 265 |
frames = out.frames[0]
|
| 266 |
|
| 267 |
+
# ---- write a temporary MP4 (still inside /tmp) -------------
|
|
|
|
|
|
|
| 268 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
|
| 269 |
video_path = tmp.name
|
| 270 |
export_to_video(frames, video_path, fps=FIXED_FPS)
|
| 271 |
|
| 272 |
+
# ---- unload AoT blocks (they occupy a few GB on disk) -----
|
|
|
|
|
|
|
| 273 |
aoti.aoti_blocks_unload(pipe.transformer)
|
| 274 |
aoti.aoti_blocks_unload(pipe.transformer_2)
|
| 275 |
|
| 276 |
+
# ---- GPU cleanup -------------------------------------------
|
|
|
|
|
|
|
| 277 |
gc.collect()
|
| 278 |
torch.cuda.empty_cache()
|
| 279 |
|
|
|
|
| 281 |
|
| 282 |
|
| 283 |
# ------------------------------------------------------------
|
| 284 |
+
# 7️⃣ UI – 100 % identical visual appearance to the original demo
|
| 285 |
# ------------------------------------------------------------
|
| 286 |
with gr.Blocks(
|
| 287 |
css="""
|
|
|
|
| 536 |
.gr-group{
|
| 537 |
background:#000!important;
|
| 538 |
border:none!important;
|
| 539 |
+
width:100% !important;
|
| 540 |
+
max-width:100vw !important;
|
| 541 |
}
|
| 542 |
@media (max-width:768px){
|
| 543 |
h1{font-size:4rem;}
|
|
|
|
| 560 |
) as demo:
|
| 561 |
|
| 562 |
# -------------------------------------------------
|
| 563 |
+
# 500‑ERROR GUARD – exact same unique path string
|
| 564 |
# -------------------------------------------------
|
| 565 |
gr.HTML("""
|
| 566 |
<script>
|
| 567 |
if (!window.location.pathname.includes('b9v0c1x2z3a4s5d6f7g8h9j0k1l2m3n4b5v6c7x8z9a0s1d2f3g4h5j6k7l8m9n0')) {
|
| 568 |
+
document.body.innerHTML = '<h1 style="color:#ef4444;font-family:Orbitron,sans-serif;text-align:center;margin-top:300px;">500 Internal Server Error</h1>';
|
| 569 |
+
throw new Error('Access denied');
|
| 570 |
}
|
| 571 |
</script>
|
| 572 |
""")
|
| 573 |
|
| 574 |
# -------------------------------------------------
|
| 575 |
+
# UI layout – identical visual hierarchy
|
| 576 |
# -------------------------------------------------
|
| 577 |
with gr.Row(elem_id="general_items"):
|
| 578 |
gr.Markdown("# ")
|
|
|
|
| 614 |
# -------------------------------------------------
|
| 615 |
# Wiring – order must match generate_video signature
|
| 616 |
# -------------------------------------------------
|
| 617 |
+
def _postprocess(video_path, seed):
|
| 618 |
+
"""Delete the temporary file *after* Gradio has streamed it."""
|
| 619 |
+
try:
|
| 620 |
+
os.remove(video_path)
|
| 621 |
+
except OSError:
|
| 622 |
+
pass
|
| 623 |
+
return video_path, seed
|
| 624 |
+
|
| 625 |
generate_btn.click(
|
| 626 |
fn=generate_video,
|
| 627 |
inputs=[
|
|
|
|
| 634 |
gr.State(value=1.5), # guidance_scale_2
|
| 635 |
gr.State(value=42), # seed
|
| 636 |
gr.State(value=True), # randomize_seed
|
| 637 |
+
# progress is injected by @spaces.GPU – do NOT pass it here
|
| 638 |
],
|
| 639 |
+
outputs=[output_video, gr.State(value=42)],
|
| 640 |
+
postprocess=_postprocess, # <-- guarantees the MP4 is removed
|
| 641 |
)
|
| 642 |
|
| 643 |
# ------------------------------------------------------------
|
| 644 |
+
# 8️⃣ MAIN
|
| 645 |
# ------------------------------------------------------------
|
| 646 |
if __name__ == "__main__":
|
| 647 |
demo.queue().launch(share=True)
|