Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -33,13 +33,13 @@ pipe = FluxWithCFGPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", t
|
|
| 33 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
| 34 |
pipe.to(device)
|
| 35 |
|
| 36 |
-
# --- Load
|
| 37 |
try:
|
| 38 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
| 39 |
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(device)
|
| 40 |
print("✅ Loaded M2M100 Albanian-English translator")
|
| 41 |
except Exception as e:
|
| 42 |
-
print(f"❌ Failed to load M2M100: {e}")
|
| 43 |
tokenizer = None
|
| 44 |
model = None
|
| 45 |
|
|
@@ -48,15 +48,15 @@ def translate_sq_to_en(text):
|
|
| 48 |
return text
|
| 49 |
try:
|
| 50 |
tokenizer.src_lang = "sq"
|
| 51 |
-
encoded = tokenizer(text, return_tensors="pt").to(device)
|
| 52 |
-
|
| 53 |
-
translated = tokenizer.batch_decode(
|
| 54 |
return translated
|
| 55 |
except Exception as e:
|
| 56 |
print(f"❌ Translation failed: {e}")
|
| 57 |
return text
|
| 58 |
|
| 59 |
-
# --- Inference Function ---
|
| 60 |
@spaces.GPU
|
| 61 |
def generate_image(prompt: str, seed: int = 42, aspect_ratio: str = "16:9", randomize_seed: bool = False):
|
| 62 |
if pipe is None:
|
|
@@ -71,8 +71,10 @@ def generate_image(prompt: str, seed: int = 42, aspect_ratio: str = "16:9", rand
|
|
| 71 |
width, height = ASPECT_RATIOS.get(aspect_ratio, (DEFAULT_WIDTH, DEFAULT_HEIGHT))
|
| 72 |
|
| 73 |
prompt_final = prompt.strip()
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
prompt_final = translate_sq_to_en(prompt_final)
|
| 77 |
print(f"✅ Translated prompt: {prompt_final}")
|
| 78 |
else:
|
|
|
|
| 33 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
| 34 |
pipe.to(device)
|
| 35 |
|
| 36 |
+
# --- Load M2M100 Albanian-English Translator ---
|
| 37 |
try:
|
| 38 |
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
| 39 |
model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(device)
|
| 40 |
print("✅ Loaded M2M100 Albanian-English translator")
|
| 41 |
except Exception as e:
|
| 42 |
+
print(f"❌ Failed to load M2M100 translator: {e}")
|
| 43 |
tokenizer = None
|
| 44 |
model = None
|
| 45 |
|
|
|
|
| 48 |
return text
|
| 49 |
try:
|
| 50 |
tokenizer.src_lang = "sq"
|
| 51 |
+
encoded = tokenizer(text, return_tensors="pt", padding=True).to(device)
|
| 52 |
+
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id("en"))
|
| 53 |
+
translated = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 54 |
return translated
|
| 55 |
except Exception as e:
|
| 56 |
print(f"❌ Translation failed: {e}")
|
| 57 |
return text
|
| 58 |
|
| 59 |
+
# --- Main Inference Function ---
|
| 60 |
@spaces.GPU
|
| 61 |
def generate_image(prompt: str, seed: int = 42, aspect_ratio: str = "16:9", randomize_seed: bool = False):
|
| 62 |
if pipe is None:
|
|
|
|
| 71 |
width, height = ASPECT_RATIOS.get(aspect_ratio, (DEFAULT_WIDTH, DEFAULT_HEIGHT))
|
| 72 |
|
| 73 |
prompt_final = prompt.strip()
|
| 74 |
+
|
| 75 |
+
# Detect if prompt is probably Albanian by common Albanian letters or phrase starts
|
| 76 |
+
if any(c in prompt_final for c in "ëçËÇ") or prompt_final.lower().startswith("një "):
|
| 77 |
+
print(f"🌐 Detected likely Albanian. Translating prompt: {prompt_final}")
|
| 78 |
prompt_final = translate_sq_to_en(prompt_final)
|
| 79 |
print(f"✅ Translated prompt: {prompt_final}")
|
| 80 |
else:
|