Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ import torch
|
|
| 6 |
import time
|
| 7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
| 8 |
from custom_pipeline import FluxWithCFGPipeline
|
|
|
|
| 9 |
|
| 10 |
# --- Torch Optimizations ---
|
| 11 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
@@ -28,8 +29,34 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 28 |
pipe = FluxWithCFGPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
| 29 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
| 30 |
|
| 31 |
-
|
| 32 |
-
pipe.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
pipe.to(device)
|
| 35 |
|
|
|
|
| 6 |
import time
|
| 7 |
from diffusers import DiffusionPipeline, AutoencoderTiny
|
| 8 |
from custom_pipeline import FluxWithCFGPipeline
|
| 9 |
+
from diffusers.hooks import apply_group_offloading
|
| 10 |
|
| 11 |
# --- Torch Optimizations ---
|
| 12 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
| 29 |
pipe = FluxWithCFGPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
| 30 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
| 31 |
|
| 32 |
+
apply_group_offloading(
|
| 33 |
+
pipe.transformer,
|
| 34 |
+
offload_type="leaf_level",
|
| 35 |
+
offload_device=torch.device("cpu"),
|
| 36 |
+
onload_device=torch.device("cuda"),
|
| 37 |
+
use_stream=True,
|
| 38 |
+
)
|
| 39 |
+
apply_group_offloading(
|
| 40 |
+
pipe.text_encoder,
|
| 41 |
+
offload_device=torch.device("cpu"),
|
| 42 |
+
onload_device=torch.device("cuda"),
|
| 43 |
+
offload_type="leaf_level",
|
| 44 |
+
use_stream=True,
|
| 45 |
+
)
|
| 46 |
+
apply_group_offloading(
|
| 47 |
+
pipe.text_encoder_2,
|
| 48 |
+
offload_device=torch.device("cpu"),
|
| 49 |
+
onload_device=torch.device("cuda"),
|
| 50 |
+
offload_type="leaf_level",
|
| 51 |
+
use_stream=True,
|
| 52 |
+
)
|
| 53 |
+
apply_group_offloading(
|
| 54 |
+
pipe.vae,
|
| 55 |
+
offload_device=torch.device("cpu"),
|
| 56 |
+
onload_device=torch.device("cuda"),
|
| 57 |
+
offload_type="leaf_level",
|
| 58 |
+
use_stream=True,
|
| 59 |
+
)
|
| 60 |
|
| 61 |
pipe.to(device)
|
| 62 |
|