Spaces:
Running
Running
upd
Browse files
app.py
CHANGED
|
@@ -1,6 +1,17 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from gradio_image_annotation import image_annotator
|
|
|
|
| 3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
example_annotation = {
|
| 5 |
"image": os.path.join(os.path.dirname(__file__), "background.png"),
|
| 6 |
"boxes": [],
|
|
@@ -12,23 +23,34 @@ def get_boxes_json(annotations):
|
|
| 12 |
width = image.shape[1]
|
| 13 |
height = image.shape[0]
|
| 14 |
boxes = annotations["boxes"]
|
|
|
|
| 15 |
for box in boxes:
|
| 16 |
box["xmin"] = box["xmin"] / width
|
| 17 |
box["xmax"] = box["xmax"] / width
|
| 18 |
box["ymin"] = box["ymin"] / height
|
| 19 |
box["ymax"] = box["ymax"] / height
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
with gr.Blocks() as demo:
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
if __name__ == "__main__":
|
| 34 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from gradio_image_annotation import image_annotator
|
| 3 |
+
from diffusers import StableDiffusionPipeline
|
| 4 |
import os
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Load model
|
| 9 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 10 |
+
"runwayml/stable-diffusion-v1-5",
|
| 11 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 12 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
pipe.safety_checker = None
|
| 14 |
+
|
| 15 |
example_annotation = {
|
| 16 |
"image": os.path.join(os.path.dirname(__file__), "background.png"),
|
| 17 |
"boxes": [],
|
|
|
|
| 23 |
width = image.shape[1]
|
| 24 |
height = image.shape[0]
|
| 25 |
boxes = annotations["boxes"]
|
| 26 |
+
prompt_final = [[]]
|
| 27 |
for box in boxes:
|
| 28 |
box["xmin"] = box["xmin"] / width
|
| 29 |
box["xmax"] = box["xmax"] / width
|
| 30 |
box["ymin"] = box["ymin"] / height
|
| 31 |
box["ymax"] = box["ymax"] / height
|
| 32 |
+
prompt_final[0].append(box["label"])
|
| 33 |
+
# import pdb; pdb.set_trace()
|
| 34 |
+
prompt = ", ".join(prompt_final[0])
|
| 35 |
+
image = pipe(prompt).images[0]
|
| 36 |
+
return image
|
| 37 |
+
# return annotations["boxes"]
|
| 38 |
|
| 39 |
with gr.Blocks() as demo:
|
| 40 |
+
with gr.Tab("DreamRenderer", id="DreamRenderer"):
|
| 41 |
+
with gr.Row():
|
| 42 |
+
with gr.Column(scale=1):
|
| 43 |
+
annotator = image_annotator(
|
| 44 |
+
example_annotation,
|
| 45 |
+
height=512,
|
| 46 |
+
width=512
|
| 47 |
+
)
|
| 48 |
+
with gr.Column(scale=1):
|
| 49 |
+
generated_image = gr.Image(label="Generated Image", height=512, width=512)
|
| 50 |
+
|
| 51 |
+
button_get = gr.Button("Generation")
|
| 52 |
+
button_get.click(get_boxes_json, inputs=annotator, outputs=generated_image)
|
| 53 |
+
|
| 54 |
|
| 55 |
if __name__ == "__main__":
|
| 56 |
demo.launch()
|