Spaces:
Running
Running
upd
Browse files- Dockerfile +6 -0
- app.py +40 -5
- migc/migc_arch.py +220 -0
- migc/migc_layers.py +241 -0
- migc/migc_pipeline.py +928 -0
- migc/migc_utils.py +143 -0
- requirements.txt +3 -1
Dockerfile
CHANGED
|
@@ -1,6 +1,12 @@
|
|
| 1 |
|
| 2 |
FROM python:3.10
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
WORKDIR /code
|
| 5 |
|
| 6 |
COPY --link --chown=1000 . .
|
|
|
|
| 1 |
|
| 2 |
FROM python:3.10
|
| 3 |
|
| 4 |
+
# Set up a new user named "user" with user ID 1000
|
| 5 |
+
RUN useradd -m -u 1000 user
|
| 6 |
+
|
| 7 |
+
# Switch to the "user" user
|
| 8 |
+
USER user
|
| 9 |
+
|
| 10 |
WORKDIR /code
|
| 11 |
|
| 12 |
COPY --link --chown=1000 . .
|
app.py
CHANGED
|
@@ -4,14 +4,44 @@ from gradio_image_annotation import image_annotator
|
|
| 4 |
from diffusers import StableDiffusionPipeline
|
| 5 |
import os
|
| 6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
# Load model
|
| 10 |
-
pipe =
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
pipe.safety_checker = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
example_annotation = {
|
| 17 |
"image": os.path.join(os.path.dirname(__file__), "background.png"),
|
|
@@ -26,15 +56,20 @@ def get_boxes_json(annotations):
|
|
| 26 |
height = image.shape[0]
|
| 27 |
boxes = annotations["boxes"]
|
| 28 |
prompt_final = [[]]
|
|
|
|
| 29 |
for box in boxes:
|
| 30 |
box["xmin"] = box["xmin"] / width
|
| 31 |
box["xmax"] = box["xmax"] / width
|
| 32 |
box["ymin"] = box["ymin"] / height
|
| 33 |
box["ymax"] = box["ymax"] / height
|
| 34 |
prompt_final[0].append(box["label"])
|
|
|
|
| 35 |
# import pdb; pdb.set_trace()
|
| 36 |
prompt = ", ".join(prompt_final[0])
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
return image
|
| 39 |
# return annotations["boxes"]
|
| 40 |
|
|
|
|
| 4 |
from diffusers import StableDiffusionPipeline
|
| 5 |
import os
|
| 6 |
import torch
|
| 7 |
+
from diffusers import EulerDiscreteScheduler
|
| 8 |
+
from migc.migc_utils import seed_everything
|
| 9 |
+
from migc.migc_pipeline import StableDiffusionMIGCPipeline, MIGCProcessor, AttentionStore
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
|
| 14 |
+
# 下载文件
|
| 15 |
+
migc_ckpt_path = hf_hub_download(
|
| 16 |
+
repo_id="limuloo1999/MIGC",
|
| 17 |
+
filename="MIGC_SD14.ckpt",
|
| 18 |
+
repo_type="model" # 也可以省略,默认就是 model
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
RV_path = hf_hub_download(
|
| 22 |
+
repo_id="SG161222/Realistic_Vision_V6.0_B1_noVAE",
|
| 23 |
+
filename="Realistic_Vision_V6.0_NV_B1.safetensors",
|
| 24 |
+
repo_type="model" # 也可以省略,默认就是 model
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
|
| 28 |
|
| 29 |
# Load model
|
| 30 |
+
# pipe = StableDiffusionMIGCPipeline.from_pretrained(
|
| 31 |
+
# "rSG161222/Realistic_Vision_V6.0_B1_noVAE",
|
| 32 |
+
# torch_dtype=torch.float32
|
| 33 |
+
# )
|
| 34 |
+
pipe = StableDiffusionMIGCPipeline.from_single_file(
|
| 35 |
+
RV_path,
|
| 36 |
+
torch_dtype=torch.float32
|
| 37 |
+
)
|
| 38 |
pipe.safety_checker = None
|
| 39 |
+
pipe.attention_store = AttentionStore()
|
| 40 |
+
from migc.migc_utils import load_migc
|
| 41 |
+
load_migc(pipe.unet , pipe.attention_store,
|
| 42 |
+
migc_ckpt_path, attn_processor=MIGCProcessor)
|
| 43 |
+
pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 44 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 45 |
|
| 46 |
example_annotation = {
|
| 47 |
"image": os.path.join(os.path.dirname(__file__), "background.png"),
|
|
|
|
| 56 |
height = image.shape[0]
|
| 57 |
boxes = annotations["boxes"]
|
| 58 |
prompt_final = [[]]
|
| 59 |
+
bboxes = [[]]
|
| 60 |
for box in boxes:
|
| 61 |
box["xmin"] = box["xmin"] / width
|
| 62 |
box["xmax"] = box["xmax"] / width
|
| 63 |
box["ymin"] = box["ymin"] / height
|
| 64 |
box["ymax"] = box["ymax"] / height
|
| 65 |
prompt_final[0].append(box["label"])
|
| 66 |
+
bboxes[0].append([box["xmin"], box["ymin"], box["xmax"], box["ymax"]])
|
| 67 |
# import pdb; pdb.set_trace()
|
| 68 |
prompt = ", ".join(prompt_final[0])
|
| 69 |
+
prompt_final[0].insert(0, prompt)
|
| 70 |
+
negative_prompt = 'worst quality, low quality, bad anatomy, watermark, text, blurry'
|
| 71 |
+
image = pipe(prompt_final, bboxes, num_inference_steps=30, guidance_scale=7.5,
|
| 72 |
+
MIGCsteps=15, aug_phase_with_and=False, negative_prompt=negative_prompt).images[0]
|
| 73 |
return image
|
| 74 |
# return annotations["boxes"]
|
| 75 |
|
migc/migc_arch.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import math
|
| 5 |
+
from migc.migc_layers import CBAM, CrossAttention, LayoutAttention
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class FourierEmbedder():
|
| 9 |
+
def __init__(self, num_freqs=64, temperature=100):
|
| 10 |
+
self.num_freqs = num_freqs
|
| 11 |
+
self.temperature = temperature
|
| 12 |
+
self.freq_bands = temperature ** ( torch.arange(num_freqs) / num_freqs )
|
| 13 |
+
|
| 14 |
+
@ torch.no_grad()
|
| 15 |
+
def __call__(self, x, cat_dim=-1):
|
| 16 |
+
out = []
|
| 17 |
+
for freq in self.freq_bands:
|
| 18 |
+
out.append( torch.sin( freq*x ) )
|
| 19 |
+
out.append( torch.cos( freq*x ) )
|
| 20 |
+
return torch.cat(out, cat_dim) # torch.Size([5, 30, 64])
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class PositionNet(nn.Module):
|
| 24 |
+
def __init__(self, in_dim, out_dim, fourier_freqs=8):
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.in_dim = in_dim
|
| 27 |
+
self.out_dim = out_dim
|
| 28 |
+
|
| 29 |
+
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
|
| 30 |
+
self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
|
| 31 |
+
|
| 32 |
+
# -------------------------------------------------------------- #
|
| 33 |
+
self.linears_position = nn.Sequential(
|
| 34 |
+
nn.Linear(self.position_dim, 512),
|
| 35 |
+
nn.SiLU(),
|
| 36 |
+
nn.Linear(512, 512),
|
| 37 |
+
nn.SiLU(),
|
| 38 |
+
nn.Linear(512, out_dim),
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
def forward(self, boxes):
|
| 42 |
+
|
| 43 |
+
# embedding position (it may includes padding as placeholder)
|
| 44 |
+
xyxy_embedding = self.fourier_embedder(boxes) # B*1*4 --> B*1*C torch.Size([5, 1, 64])
|
| 45 |
+
xyxy_embedding = self.linears_position(xyxy_embedding) # B*1*C --> B*1*768 torch.Size([5, 1, 768])
|
| 46 |
+
|
| 47 |
+
return xyxy_embedding
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class SAC(nn.Module):
|
| 51 |
+
def __init__(self, C, number_pro=30):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.C = C
|
| 54 |
+
self.number_pro = number_pro
|
| 55 |
+
self.conv1 = nn.Conv2d(C + 1, C, 1, 1)
|
| 56 |
+
self.cbam1 = CBAM(C)
|
| 57 |
+
self.conv2 = nn.Conv2d(C, 1, 1, 1)
|
| 58 |
+
self.cbam2 = CBAM(number_pro, reduction_ratio=1)
|
| 59 |
+
|
| 60 |
+
def forward(self, x, guidance_mask, sac_scale=None):
|
| 61 |
+
'''
|
| 62 |
+
:param x: (B, phase_num, HW, C)
|
| 63 |
+
:param guidance_mask: (B, phase_num, H, W)
|
| 64 |
+
:return:
|
| 65 |
+
'''
|
| 66 |
+
B, phase_num, HW, C = x.shape
|
| 67 |
+
_, _, H, W = guidance_mask.shape
|
| 68 |
+
guidance_mask = guidance_mask.view(guidance_mask.shape[0], phase_num, -1)[
|
| 69 |
+
..., None] # (B, phase_num, HW, 1)
|
| 70 |
+
|
| 71 |
+
null_x = torch.zeros_like(x[:, [0], ...]).to(x.device)
|
| 72 |
+
null_mask = torch.zeros_like(guidance_mask[:, [0], ...]).to(guidance_mask.device)
|
| 73 |
+
|
| 74 |
+
x = torch.cat([x, null_x], dim=1)
|
| 75 |
+
guidance_mask = torch.cat([guidance_mask, null_mask], dim=1)
|
| 76 |
+
phase_num += 1
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
scale = torch.cat([x, guidance_mask], dim=-1) # (B, phase_num, HW, C+1)
|
| 80 |
+
scale = scale.view(-1, H, W, C + 1) # (B * phase_num, H, W, C+1)
|
| 81 |
+
scale = scale.permute(0, 3, 1, 2) # (B * phase_num, C+1, H, W)
|
| 82 |
+
scale = self.conv1(scale) # (B * phase_num, C, H, W)
|
| 83 |
+
scale = self.cbam1(scale) # (B * phase_num, C, H, W)
|
| 84 |
+
scale = self.conv2(scale) # (B * phase_num, 1, H, W)
|
| 85 |
+
scale = scale.view(B, phase_num, H, W) # (B, phase_num, H, W)
|
| 86 |
+
|
| 87 |
+
null_scale = scale[:, [-1], ...]
|
| 88 |
+
scale = scale[:, :-1, ...]
|
| 89 |
+
x = x[:, :-1, ...]
|
| 90 |
+
|
| 91 |
+
pad_num = self.number_pro - phase_num + 1
|
| 92 |
+
|
| 93 |
+
ori_phase_num = scale[:, 1:-1, ...].shape[1]
|
| 94 |
+
phase_scale = torch.cat([scale[:, 1:-1, ...], null_scale.repeat(1, pad_num, 1, 1)], dim=1)
|
| 95 |
+
shuffled_order = torch.randperm(phase_scale.shape[1])
|
| 96 |
+
inv_shuffled_order = torch.argsort(shuffled_order)
|
| 97 |
+
|
| 98 |
+
random_phase_scale = phase_scale[:, shuffled_order, ...]
|
| 99 |
+
|
| 100 |
+
scale = torch.cat([scale[:, [0], ...], random_phase_scale, scale[:, [-1], ...]], dim=1)
|
| 101 |
+
# (B, number_pro, H, W)
|
| 102 |
+
|
| 103 |
+
scale = self.cbam2(scale) # (B, number_pro, H, W)
|
| 104 |
+
scale = scale.view(B, self.number_pro, HW)[..., None] # (B, number_pro, HW)
|
| 105 |
+
|
| 106 |
+
random_phase_scale = scale[:, 1: -1, ...]
|
| 107 |
+
phase_scale = random_phase_scale[:, inv_shuffled_order[:ori_phase_num], :]
|
| 108 |
+
if sac_scale is not None:
|
| 109 |
+
instance_num = len(sac_scale)
|
| 110 |
+
for i in range(instance_num):
|
| 111 |
+
phase_scale[:, i, ...] = phase_scale[:, i, ...] * sac_scale[i]
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
scale = torch.cat([scale[:, [0], ...], phase_scale, scale[:, [-1], ...]], dim=1)
|
| 115 |
+
|
| 116 |
+
scale = scale.softmax(dim=1) # (B, phase_num, HW, 1)
|
| 117 |
+
out = (x * scale).sum(dim=1, keepdims=True) # (B, 1, HW, C)
|
| 118 |
+
return out, scale
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class MIGC(nn.Module):
|
| 122 |
+
def __init__(self, C, attn_type='base', context_dim=768, heads=8):
|
| 123 |
+
super().__init__()
|
| 124 |
+
self.ea = CrossAttention(query_dim=C, context_dim=context_dim,
|
| 125 |
+
heads=heads, dim_head=C // heads,
|
| 126 |
+
dropout=0.0)
|
| 127 |
+
self.la = LayoutAttention(query_dim=C,
|
| 128 |
+
heads=heads, dim_head=C // heads,
|
| 129 |
+
dropout=0.0)
|
| 130 |
+
self.norm = nn.LayerNorm(C)
|
| 131 |
+
self.sac = SAC(C)
|
| 132 |
+
self.pos_net = PositionNet(in_dim=768, out_dim=768)
|
| 133 |
+
|
| 134 |
+
def forward(self, ca_x, guidance_mask, other_info, return_fuser_info=False):
|
| 135 |
+
# x: (B, instance_num+1, HW, C)
|
| 136 |
+
# guidance_mask: (B, instance_num, H, W)
|
| 137 |
+
# box: (instance_num, 4)
|
| 138 |
+
# image_token: (B, instance_num+1, HW, C)
|
| 139 |
+
full_H = other_info['height']
|
| 140 |
+
full_W = other_info['width']
|
| 141 |
+
B, _, HW, C = ca_x.shape
|
| 142 |
+
instance_num = guidance_mask.shape[1]
|
| 143 |
+
down_scale = int(math.sqrt(full_H * full_W // ca_x.shape[2]))
|
| 144 |
+
H = full_H // down_scale
|
| 145 |
+
W = full_W // down_scale
|
| 146 |
+
guidance_mask = F.interpolate(guidance_mask, size=(H, W), mode='bilinear') # (B, instance_num, H, W)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
supplement_mask = other_info['supplement_mask'] # (B, 1, 64, 64)
|
| 150 |
+
supplement_mask = F.interpolate(supplement_mask, size=(H, W), mode='bilinear') # (B, 1, H, W)
|
| 151 |
+
image_token = other_info['image_token']
|
| 152 |
+
assert image_token.shape == ca_x.shape
|
| 153 |
+
context = other_info['context_pooler']
|
| 154 |
+
box = other_info['box']
|
| 155 |
+
box = box.view(B * instance_num, 1, -1)
|
| 156 |
+
box_token = self.pos_net(box)
|
| 157 |
+
context = torch.cat([context[1:, ...], box_token], dim=1)
|
| 158 |
+
ca_scale = other_info['ca_scale'] if 'ca_scale' in other_info else None
|
| 159 |
+
ea_scale = other_info['ea_scale'] if 'ea_scale' in other_info else None
|
| 160 |
+
sac_scale = other_info['sac_scale'] if 'sac_scale' in other_info else None
|
| 161 |
+
|
| 162 |
+
ea_x, ea_attn = self.ea(self.norm(image_token[:, 1:, ...].view(B * instance_num, HW, C)),
|
| 163 |
+
context=context, return_attn=True)
|
| 164 |
+
ea_x = ea_x.view(B, instance_num, HW, C)
|
| 165 |
+
ea_x = ea_x * guidance_mask.view(B, instance_num, HW, 1)
|
| 166 |
+
|
| 167 |
+
ca_x[:, 1:, ...] = ca_x[:, 1:, ...] * guidance_mask.view(B, instance_num, HW, 1) # (B, phase_num, HW, C)
|
| 168 |
+
if ca_scale is not None:
|
| 169 |
+
assert len(ca_scale) == instance_num
|
| 170 |
+
for i in range(instance_num):
|
| 171 |
+
ca_x[:, i+1, ...] = ca_x[:, i+1, ...] * ca_scale[i] + ea_x[:, i, ...] * ea_scale[i]
|
| 172 |
+
else:
|
| 173 |
+
ca_x[:, 1:, ...] = ca_x[:, 1:, ...] + ea_x
|
| 174 |
+
|
| 175 |
+
ori_image_token = image_token[:, 0, ...] # (B, HW, C)
|
| 176 |
+
fusion_template = self.la(x=ori_image_token, guidance_mask=torch.cat([guidance_mask[:, :, ...], supplement_mask], dim=1)) # (B, HW, C)
|
| 177 |
+
fusion_template = fusion_template.view(B, 1, HW, C) # (B, 1, HW, C)
|
| 178 |
+
|
| 179 |
+
ca_x = torch.cat([ca_x, fusion_template], dim = 1)
|
| 180 |
+
ca_x[:, 0, ...] = ca_x[:, 0, ...] * supplement_mask.view(B, HW, 1)
|
| 181 |
+
guidance_mask = torch.cat([
|
| 182 |
+
supplement_mask,
|
| 183 |
+
guidance_mask,
|
| 184 |
+
torch.ones(B, 1, H, W).to(guidance_mask.device)
|
| 185 |
+
], dim=1)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
out_MIGC, sac_scale = self.sac(ca_x, guidance_mask, sac_scale=sac_scale)
|
| 189 |
+
if return_fuser_info:
|
| 190 |
+
fuser_info = {}
|
| 191 |
+
fuser_info['sac_scale'] = sac_scale.view(B, instance_num + 2, H, W)
|
| 192 |
+
fuser_info['ea_attn'] = ea_attn.mean(dim=1).view(B, instance_num, H, W, 2)
|
| 193 |
+
return out_MIGC, fuser_info
|
| 194 |
+
else:
|
| 195 |
+
return out_MIGC
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class NaiveFuser(nn.Module):
|
| 199 |
+
def __init__(self):
|
| 200 |
+
super().__init__()
|
| 201 |
+
def forward(self, ca_x, guidance_mask, other_info, return_fuser_info=False):
|
| 202 |
+
# ca_x: (B, instance_num+1, HW, C)
|
| 203 |
+
# guidance_mask: (B, instance_num, H, W)
|
| 204 |
+
# box: (instance_num, 4)
|
| 205 |
+
# image_token: (B, instance_num+1, HW, C)
|
| 206 |
+
full_H = other_info['height']
|
| 207 |
+
full_W = other_info['width']
|
| 208 |
+
B, _, HW, C = ca_x.shape
|
| 209 |
+
instance_num = guidance_mask.shape[1]
|
| 210 |
+
down_scale = int(math.sqrt(full_H * full_W // ca_x.shape[2]))
|
| 211 |
+
H = full_H // down_scale
|
| 212 |
+
W = full_W // down_scale
|
| 213 |
+
guidance_mask = F.interpolate(guidance_mask, size=(H, W), mode='bilinear') # (B, instance_num, H, W)
|
| 214 |
+
guidance_mask = torch.cat([torch.ones(B, 1, H, W).to(guidance_mask.device), guidance_mask * 10], dim=1) # (B, instance_num+1, H, W)
|
| 215 |
+
guidance_mask = guidance_mask.view(B, instance_num + 1, HW, 1)
|
| 216 |
+
out_MIGC = (ca_x * guidance_mask).sum(dim=1) / (guidance_mask.sum(dim=1) + 1e-6)
|
| 217 |
+
if return_fuser_info:
|
| 218 |
+
return out_MIGC, None
|
| 219 |
+
else:
|
| 220 |
+
return out_MIGC
|
migc/migc_layers.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import random
|
| 5 |
+
import math
|
| 6 |
+
from inspect import isfunction
|
| 7 |
+
from einops import rearrange, repeat
|
| 8 |
+
from torch import nn, einsum
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def exists(val):
|
| 12 |
+
return val is not None
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def default(val, d):
|
| 16 |
+
if exists(val):
|
| 17 |
+
return val
|
| 18 |
+
return d() if isfunction(d) else d
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class CrossAttention(nn.Module):
|
| 22 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
| 23 |
+
super().__init__()
|
| 24 |
+
inner_dim = dim_head * heads
|
| 25 |
+
context_dim = default(context_dim, query_dim)
|
| 26 |
+
|
| 27 |
+
self.scale = dim_head ** -0.5
|
| 28 |
+
self.heads = heads
|
| 29 |
+
|
| 30 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 31 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 32 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 33 |
+
|
| 34 |
+
self.to_out = nn.Sequential(
|
| 35 |
+
nn.Linear(inner_dim, query_dim),
|
| 36 |
+
nn.Dropout(dropout)
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
def forward(self, x, context=None, mask=None, return_attn=False, need_softmax=True, guidance_mask=None,
|
| 40 |
+
forward_layout_guidance=False):
|
| 41 |
+
h = self.heads
|
| 42 |
+
b = x.shape[0]
|
| 43 |
+
|
| 44 |
+
q = self.to_q(x)
|
| 45 |
+
context = default(context, x)
|
| 46 |
+
k = self.to_k(context)
|
| 47 |
+
v = self.to_v(context)
|
| 48 |
+
|
| 49 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
| 50 |
+
|
| 51 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 52 |
+
if forward_layout_guidance:
|
| 53 |
+
# sim: (B * phase_num * h, HW, 77), b = B * phase_num
|
| 54 |
+
# guidance_mask: (B, phase_num, 64, 64)
|
| 55 |
+
HW = sim.shape[1]
|
| 56 |
+
H = W = int(math.sqrt(HW))
|
| 57 |
+
guidance_mask = F.interpolate(guidance_mask, size=(H, W), mode='nearest') # (B, phase_num, H, W)
|
| 58 |
+
sim = sim.view(b, h, HW, 77)
|
| 59 |
+
guidance_mask = guidance_mask.view(b, 1, HW, 1)
|
| 60 |
+
guidance_mask[guidance_mask == 1] = 5.0
|
| 61 |
+
guidance_mask[guidance_mask == 0] = 0.1
|
| 62 |
+
sim[:, :, :, 1:] = sim[:, :, :, 1:] * guidance_mask
|
| 63 |
+
sim = sim.view(b * h, HW, 77)
|
| 64 |
+
|
| 65 |
+
if exists(mask):
|
| 66 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 67 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 68 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 69 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 70 |
+
|
| 71 |
+
if need_softmax:
|
| 72 |
+
attn = sim.softmax(dim=-1)
|
| 73 |
+
else:
|
| 74 |
+
attn = sim
|
| 75 |
+
|
| 76 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
| 77 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
| 78 |
+
if return_attn:
|
| 79 |
+
attn = attn.view(b, h, attn.shape[-2], attn.shape[-1])
|
| 80 |
+
return self.to_out(out), attn
|
| 81 |
+
else:
|
| 82 |
+
return self.to_out(out)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class LayoutAttention(nn.Module):
|
| 86 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., use_lora=False):
|
| 87 |
+
super().__init__()
|
| 88 |
+
inner_dim = dim_head * heads
|
| 89 |
+
context_dim = default(context_dim, query_dim)
|
| 90 |
+
|
| 91 |
+
self.use_lora = use_lora
|
| 92 |
+
self.scale = dim_head ** -0.5
|
| 93 |
+
self.heads = heads
|
| 94 |
+
|
| 95 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 96 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 97 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 98 |
+
|
| 99 |
+
self.to_out = nn.Sequential(
|
| 100 |
+
nn.Linear(inner_dim, query_dim),
|
| 101 |
+
nn.Dropout(dropout)
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
def forward(self, x, context=None, mask=None, return_attn=False, need_softmax=True, guidance_mask=None):
|
| 105 |
+
h = self.heads
|
| 106 |
+
b = x.shape[0]
|
| 107 |
+
|
| 108 |
+
q = self.to_q(x)
|
| 109 |
+
context = default(context, x)
|
| 110 |
+
k = self.to_k(context)
|
| 111 |
+
v = self.to_v(context)
|
| 112 |
+
|
| 113 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
| 114 |
+
|
| 115 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 116 |
+
|
| 117 |
+
_, phase_num, H, W = guidance_mask.shape
|
| 118 |
+
HW = H * W
|
| 119 |
+
guidance_mask_o = guidance_mask.view(b * phase_num, HW, 1)
|
| 120 |
+
guidance_mask_t = guidance_mask.view(b * phase_num, 1, HW)
|
| 121 |
+
guidance_mask_sim = torch.bmm(guidance_mask_o, guidance_mask_t) # (B * phase_num, HW, HW)
|
| 122 |
+
guidance_mask_sim = guidance_mask_sim.view(b, phase_num, HW, HW).sum(dim=1)
|
| 123 |
+
guidance_mask_sim[guidance_mask_sim > 1] = 1 # (B, HW, HW)
|
| 124 |
+
guidance_mask_sim = guidance_mask_sim.view(b, 1, HW, HW)
|
| 125 |
+
guidance_mask_sim = guidance_mask_sim.repeat(1, self.heads, 1, 1)
|
| 126 |
+
guidance_mask_sim = guidance_mask_sim.view(b * self.heads, HW, HW) # (B * head, HW, HW)
|
| 127 |
+
|
| 128 |
+
sim[:, :, :HW][guidance_mask_sim == 0] = -torch.finfo(sim.dtype).max
|
| 129 |
+
|
| 130 |
+
if exists(mask):
|
| 131 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 132 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 133 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 134 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 135 |
+
|
| 136 |
+
# attention, what we cannot get enough of
|
| 137 |
+
|
| 138 |
+
if need_softmax:
|
| 139 |
+
attn = sim.softmax(dim=-1)
|
| 140 |
+
else:
|
| 141 |
+
attn = sim
|
| 142 |
+
|
| 143 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
| 144 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
| 145 |
+
if return_attn:
|
| 146 |
+
attn = attn.view(b, h, attn.shape[-2], attn.shape[-1])
|
| 147 |
+
return self.to_out(out), attn
|
| 148 |
+
else:
|
| 149 |
+
return self.to_out(out)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class BasicConv(nn.Module):
|
| 153 |
+
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=False, bias=False):
|
| 154 |
+
super(BasicConv, self).__init__()
|
| 155 |
+
self.out_channels = out_planes
|
| 156 |
+
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
|
| 157 |
+
self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None
|
| 158 |
+
self.relu = nn.ReLU() if relu else None
|
| 159 |
+
|
| 160 |
+
def forward(self, x):
|
| 161 |
+
x = self.conv(x)
|
| 162 |
+
if self.bn is not None:
|
| 163 |
+
x = self.bn(x)
|
| 164 |
+
if self.relu is not None:
|
| 165 |
+
x = self.relu(x)
|
| 166 |
+
return x
|
| 167 |
+
|
| 168 |
+
class Flatten(nn.Module):
|
| 169 |
+
def forward(self, x):
|
| 170 |
+
return x.view(x.size(0), -1)
|
| 171 |
+
|
| 172 |
+
class ChannelGate(nn.Module):
|
| 173 |
+
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']):
|
| 174 |
+
super(ChannelGate, self).__init__()
|
| 175 |
+
self.gate_channels = gate_channels
|
| 176 |
+
self.mlp = nn.Sequential(
|
| 177 |
+
Flatten(),
|
| 178 |
+
nn.Linear(gate_channels, gate_channels // reduction_ratio),
|
| 179 |
+
nn.ReLU(),
|
| 180 |
+
nn.Linear(gate_channels // reduction_ratio, gate_channels)
|
| 181 |
+
)
|
| 182 |
+
self.pool_types = pool_types
|
| 183 |
+
def forward(self, x):
|
| 184 |
+
channel_att_sum = None
|
| 185 |
+
for pool_type in self.pool_types:
|
| 186 |
+
if pool_type=='avg':
|
| 187 |
+
avg_pool = F.avg_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
|
| 188 |
+
channel_att_raw = self.mlp( avg_pool )
|
| 189 |
+
elif pool_type=='max':
|
| 190 |
+
max_pool = F.max_pool2d( x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
|
| 191 |
+
channel_att_raw = self.mlp( max_pool )
|
| 192 |
+
elif pool_type=='lp':
|
| 193 |
+
lp_pool = F.lp_pool2d( x, 2, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
|
| 194 |
+
channel_att_raw = self.mlp( lp_pool )
|
| 195 |
+
elif pool_type=='lse':
|
| 196 |
+
# LSE pool only
|
| 197 |
+
lse_pool = logsumexp_2d(x)
|
| 198 |
+
channel_att_raw = self.mlp( lse_pool )
|
| 199 |
+
|
| 200 |
+
if channel_att_sum is None:
|
| 201 |
+
channel_att_sum = channel_att_raw
|
| 202 |
+
else:
|
| 203 |
+
channel_att_sum = channel_att_sum + channel_att_raw
|
| 204 |
+
|
| 205 |
+
scale = F.sigmoid( channel_att_sum ).unsqueeze(2).unsqueeze(3).expand_as(x)
|
| 206 |
+
return x * scale
|
| 207 |
+
|
| 208 |
+
def logsumexp_2d(tensor):
|
| 209 |
+
tensor_flatten = tensor.view(tensor.size(0), tensor.size(1), -1)
|
| 210 |
+
s, _ = torch.max(tensor_flatten, dim=2, keepdim=True)
|
| 211 |
+
outputs = s + (tensor_flatten - s).exp().sum(dim=2, keepdim=True).log()
|
| 212 |
+
return outputs
|
| 213 |
+
|
| 214 |
+
class ChannelPool(nn.Module):
|
| 215 |
+
def forward(self, x):
|
| 216 |
+
return torch.cat( (torch.max(x,1)[0].unsqueeze(1), torch.mean(x,1).unsqueeze(1)), dim=1 )
|
| 217 |
+
|
| 218 |
+
class SpatialGate(nn.Module):
|
| 219 |
+
def __init__(self):
|
| 220 |
+
super(SpatialGate, self).__init__()
|
| 221 |
+
kernel_size = 7
|
| 222 |
+
self.compress = ChannelPool()
|
| 223 |
+
self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False)
|
| 224 |
+
def forward(self, x):
|
| 225 |
+
x_compress = self.compress(x)
|
| 226 |
+
x_out = self.spatial(x_compress)
|
| 227 |
+
scale = F.sigmoid(x_out) # broadcasting
|
| 228 |
+
return x * scale
|
| 229 |
+
|
| 230 |
+
class CBAM(nn.Module):
|
| 231 |
+
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max'], no_spatial=False):
|
| 232 |
+
super(CBAM, self).__init__()
|
| 233 |
+
self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types)
|
| 234 |
+
self.no_spatial=no_spatial
|
| 235 |
+
if not no_spatial:
|
| 236 |
+
self.SpatialGate = SpatialGate()
|
| 237 |
+
def forward(self, x):
|
| 238 |
+
x_out = self.ChannelGate(x)
|
| 239 |
+
if not self.no_spatial:
|
| 240 |
+
x_out = self.SpatialGate(x_out)
|
| 241 |
+
return x_out
|
migc/migc_pipeline.py
ADDED
|
@@ -0,0 +1,928 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import random
|
| 3 |
+
import time
|
| 4 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 5 |
+
# import moxing as mox
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from diffusers.loaders import TextualInversionLoaderMixin
|
| 9 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 10 |
+
from diffusers.models.attention_processor import Attention
|
| 11 |
+
from diffusers.pipelines.stable_diffusion import (
|
| 12 |
+
StableDiffusionPipeline,
|
| 13 |
+
StableDiffusionPipelineOutput,
|
| 14 |
+
StableDiffusionSafetyChecker,
|
| 15 |
+
)
|
| 16 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 17 |
+
from diffusers.utils import logging
|
| 18 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 19 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
| 20 |
+
import inspect
|
| 21 |
+
import os
|
| 22 |
+
import math
|
| 23 |
+
import torch.nn as nn
|
| 24 |
+
import torch.nn.functional as F
|
| 25 |
+
# from utils import load_utils
|
| 26 |
+
import argparse
|
| 27 |
+
import yaml
|
| 28 |
+
import cv2
|
| 29 |
+
import math
|
| 30 |
+
from migc.migc_arch import MIGC, NaiveFuser
|
| 31 |
+
from scipy.ndimage import uniform_filter, gaussian_filter
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__)
|
| 34 |
+
|
| 35 |
+
class AttentionStore:
|
| 36 |
+
@staticmethod
|
| 37 |
+
def get_empty_store():
|
| 38 |
+
return {"down": [], "mid": [], "up": []}
|
| 39 |
+
|
| 40 |
+
def __call__(self, attn, is_cross: bool, place_in_unet: str):
|
| 41 |
+
if is_cross:
|
| 42 |
+
if attn.shape[1] in self.attn_res:
|
| 43 |
+
self.step_store[place_in_unet].append(attn)
|
| 44 |
+
|
| 45 |
+
self.cur_att_layer += 1
|
| 46 |
+
if self.cur_att_layer == self.num_att_layers:
|
| 47 |
+
self.cur_att_layer = 0
|
| 48 |
+
self.between_steps()
|
| 49 |
+
|
| 50 |
+
def between_steps(self):
|
| 51 |
+
self.attention_store = self.step_store
|
| 52 |
+
self.step_store = self.get_empty_store()
|
| 53 |
+
|
| 54 |
+
def maps(self, block_type: str):
|
| 55 |
+
return self.attention_store[block_type]
|
| 56 |
+
|
| 57 |
+
def reset(self):
|
| 58 |
+
self.cur_att_layer = 0
|
| 59 |
+
self.step_store = self.get_empty_store()
|
| 60 |
+
self.attention_store = {}
|
| 61 |
+
|
| 62 |
+
def __init__(self, attn_res=[64*64, 32*32, 16*16, 8*8]):
|
| 63 |
+
"""
|
| 64 |
+
Initialize an empty AttentionStore :param step_index: used to visualize only a specific step in the diffusion
|
| 65 |
+
process
|
| 66 |
+
"""
|
| 67 |
+
self.num_att_layers = -1
|
| 68 |
+
self.cur_att_layer = 0
|
| 69 |
+
self.step_store = self.get_empty_store()
|
| 70 |
+
self.attention_store = {}
|
| 71 |
+
self.curr_step_index = 0
|
| 72 |
+
self.attn_res = attn_res
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def get_sup_mask(mask_list):
|
| 76 |
+
or_mask = np.zeros_like(mask_list[0])
|
| 77 |
+
for mask in mask_list:
|
| 78 |
+
or_mask += mask
|
| 79 |
+
or_mask[or_mask >= 1] = 1
|
| 80 |
+
sup_mask = 1 - or_mask
|
| 81 |
+
return sup_mask
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class MIGCProcessor(nn.Module):
|
| 85 |
+
def __init__(self, config, attnstore, place_in_unet):
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.attnstore = attnstore
|
| 88 |
+
self.place_in_unet = place_in_unet
|
| 89 |
+
self.not_use_migc = config['not_use_migc']
|
| 90 |
+
self.naive_fuser = NaiveFuser()
|
| 91 |
+
self.embedding = {}
|
| 92 |
+
if not self.not_use_migc:
|
| 93 |
+
self.migc = MIGC(config['C'])
|
| 94 |
+
|
| 95 |
+
def __call__(
|
| 96 |
+
self,
|
| 97 |
+
attn: Attention,
|
| 98 |
+
hidden_states,
|
| 99 |
+
encoder_hidden_states=None,
|
| 100 |
+
attention_mask=None,
|
| 101 |
+
prompt_nums=[],
|
| 102 |
+
bboxes=[],
|
| 103 |
+
ith=None,
|
| 104 |
+
embeds_pooler=None,
|
| 105 |
+
timestep=None,
|
| 106 |
+
height=512,
|
| 107 |
+
width=512,
|
| 108 |
+
MIGCsteps=20,
|
| 109 |
+
NaiveFuserSteps=-1,
|
| 110 |
+
ca_scale=None,
|
| 111 |
+
ea_scale=None,
|
| 112 |
+
sac_scale=None,
|
| 113 |
+
use_sa_preserve=False,
|
| 114 |
+
sa_preserve=False,
|
| 115 |
+
):
|
| 116 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
| 117 |
+
assert(batch_size == 2, "We currently only implement sampling with batch_size=1, \
|
| 118 |
+
and we will implement sampling with batch_size=N as soon as possible.")
|
| 119 |
+
attention_mask = attn.prepare_attention_mask(
|
| 120 |
+
attention_mask, sequence_length, batch_size
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
instance_num = len(bboxes[0])
|
| 124 |
+
|
| 125 |
+
if ith > MIGCsteps:
|
| 126 |
+
not_use_migc = True
|
| 127 |
+
else:
|
| 128 |
+
not_use_migc = self.not_use_migc
|
| 129 |
+
is_vanilla_cross = (not_use_migc and ith > NaiveFuserSteps)
|
| 130 |
+
if instance_num == 0:
|
| 131 |
+
is_vanilla_cross = True
|
| 132 |
+
|
| 133 |
+
is_cross = encoder_hidden_states is not None
|
| 134 |
+
|
| 135 |
+
ori_hidden_states = hidden_states.clone()
|
| 136 |
+
|
| 137 |
+
# Only Need Negative Prompt and Global Prompt.
|
| 138 |
+
if is_cross and is_vanilla_cross:
|
| 139 |
+
encoder_hidden_states = encoder_hidden_states[:2, ...]
|
| 140 |
+
|
| 141 |
+
# In this case, we need to use MIGC or naive_fuser, so we copy the hidden_states_cond (instance_num+1) times for QKV
|
| 142 |
+
if is_cross and not is_vanilla_cross:
|
| 143 |
+
hidden_states_uncond = hidden_states[[0], ...]
|
| 144 |
+
hidden_states_cond = hidden_states[[1], ...].repeat(instance_num + 1, 1, 1)
|
| 145 |
+
hidden_states = torch.cat([hidden_states_uncond, hidden_states_cond])
|
| 146 |
+
|
| 147 |
+
# QKV Operation of Vanilla Self-Attention or Cross-Attention
|
| 148 |
+
query = attn.to_q(hidden_states)
|
| 149 |
+
|
| 150 |
+
if (
|
| 151 |
+
not is_cross
|
| 152 |
+
and use_sa_preserve
|
| 153 |
+
and timestep.item() in self.embedding
|
| 154 |
+
and self.place_in_unet == "up"
|
| 155 |
+
):
|
| 156 |
+
hidden_states = torch.cat((hidden_states, torch.from_numpy(self.embedding[timestep.item()]).to(hidden_states.device)), dim=1)
|
| 157 |
+
|
| 158 |
+
if not is_cross and sa_preserve and self.place_in_unet == "up":
|
| 159 |
+
self.embedding[timestep.item()] = ori_hidden_states.cpu().numpy()
|
| 160 |
+
|
| 161 |
+
encoder_hidden_states = (
|
| 162 |
+
encoder_hidden_states
|
| 163 |
+
if encoder_hidden_states is not None
|
| 164 |
+
else hidden_states
|
| 165 |
+
)
|
| 166 |
+
key = attn.to_k(encoder_hidden_states)
|
| 167 |
+
value = attn.to_v(encoder_hidden_states)
|
| 168 |
+
query = attn.head_to_batch_dim(query)
|
| 169 |
+
key = attn.head_to_batch_dim(key)
|
| 170 |
+
value = attn.head_to_batch_dim(value)
|
| 171 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask) # 48 4096 77
|
| 172 |
+
self.attnstore(attention_probs, is_cross, self.place_in_unet)
|
| 173 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 174 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
| 175 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 176 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 177 |
+
|
| 178 |
+
###### Self-Attention Results ######
|
| 179 |
+
if not is_cross:
|
| 180 |
+
return hidden_states
|
| 181 |
+
|
| 182 |
+
###### Vanilla Cross-Attention Results ######
|
| 183 |
+
if is_vanilla_cross:
|
| 184 |
+
return hidden_states
|
| 185 |
+
|
| 186 |
+
###### Cross-Attention with MIGC ######
|
| 187 |
+
assert (not is_vanilla_cross)
|
| 188 |
+
# hidden_states: torch.Size([1+1+instance_num, HW, C]), the first 1 is the uncond ca output, the second 1 is the global ca output.
|
| 189 |
+
hidden_states_uncond = hidden_states[[0], ...] # torch.Size([1, HW, C])
|
| 190 |
+
cond_ca_output = hidden_states[1: , ...].unsqueeze(0) # torch.Size([1, 1+instance_num, 5, 64, 1280])
|
| 191 |
+
guidance_masks = []
|
| 192 |
+
in_box = []
|
| 193 |
+
# Construct Instance Guidance Mask
|
| 194 |
+
for bbox in bboxes[0]:
|
| 195 |
+
guidance_mask = np.zeros((height, width))
|
| 196 |
+
w_min = int(width * bbox[0])
|
| 197 |
+
w_max = int(width * bbox[2])
|
| 198 |
+
h_min = int(height * bbox[1])
|
| 199 |
+
h_max = int(height * bbox[3])
|
| 200 |
+
guidance_mask[h_min: h_max, w_min: w_max] = 1.0
|
| 201 |
+
guidance_masks.append(guidance_mask[None, ...])
|
| 202 |
+
in_box.append([bbox[0], bbox[2], bbox[1], bbox[3]])
|
| 203 |
+
|
| 204 |
+
# Construct Background Guidance Mask
|
| 205 |
+
sup_mask = get_sup_mask(guidance_masks)
|
| 206 |
+
supplement_mask = torch.from_numpy(sup_mask[None, ...])
|
| 207 |
+
supplement_mask = F.interpolate(supplement_mask, (height//8, width//8), mode='bilinear').float()
|
| 208 |
+
supplement_mask = supplement_mask.to(hidden_states.device) # (1, 1, H, W)
|
| 209 |
+
|
| 210 |
+
guidance_masks = np.concatenate(guidance_masks, axis=0)
|
| 211 |
+
guidance_masks = guidance_masks[None, ...]
|
| 212 |
+
guidance_masks = torch.from_numpy(guidance_masks).float().to(cond_ca_output.device)
|
| 213 |
+
guidance_masks = F.interpolate(guidance_masks, (height//8, width//8), mode='bilinear') # (1, instance_num, H, W)
|
| 214 |
+
|
| 215 |
+
in_box = torch.from_numpy(np.array(in_box))[None, ...].float().to(cond_ca_output.device) # (1, instance_num, 4)
|
| 216 |
+
|
| 217 |
+
other_info = {}
|
| 218 |
+
other_info['image_token'] = hidden_states_cond[None, ...]
|
| 219 |
+
other_info['context'] = encoder_hidden_states[1:, ...]
|
| 220 |
+
other_info['box'] = in_box
|
| 221 |
+
other_info['context_pooler'] =embeds_pooler # (instance_num, 1, 768)
|
| 222 |
+
other_info['supplement_mask'] = supplement_mask
|
| 223 |
+
other_info['attn2'] = None
|
| 224 |
+
other_info['attn'] = attn
|
| 225 |
+
other_info['height'] = height
|
| 226 |
+
other_info['width'] = width
|
| 227 |
+
other_info['ca_scale'] = ca_scale
|
| 228 |
+
other_info['ea_scale'] = ea_scale
|
| 229 |
+
other_info['sac_scale'] = sac_scale
|
| 230 |
+
|
| 231 |
+
if not not_use_migc:
|
| 232 |
+
hidden_states_cond, fuser_info = self.migc(cond_ca_output,
|
| 233 |
+
guidance_masks,
|
| 234 |
+
other_info=other_info,
|
| 235 |
+
return_fuser_info=True)
|
| 236 |
+
else:
|
| 237 |
+
hidden_states_cond, fuser_info = self.naive_fuser(cond_ca_output,
|
| 238 |
+
guidance_masks,
|
| 239 |
+
other_info=other_info,
|
| 240 |
+
return_fuser_info=True)
|
| 241 |
+
hidden_states_cond = hidden_states_cond.squeeze(1)
|
| 242 |
+
|
| 243 |
+
hidden_states = torch.cat([hidden_states_uncond, hidden_states_cond])
|
| 244 |
+
return hidden_states
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class StableDiffusionMIGCPipeline(StableDiffusionPipeline):
|
| 248 |
+
def __init__(
|
| 249 |
+
self,
|
| 250 |
+
vae: AutoencoderKL,
|
| 251 |
+
text_encoder: CLIPTextModel,
|
| 252 |
+
tokenizer: CLIPTokenizer,
|
| 253 |
+
unet: UNet2DConditionModel,
|
| 254 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 255 |
+
safety_checker: StableDiffusionSafetyChecker,
|
| 256 |
+
feature_extractor: CLIPImageProcessor,
|
| 257 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
| 258 |
+
requires_safety_checker: bool = True,
|
| 259 |
+
):
|
| 260 |
+
# Get the parameter signature of the parent class constructor
|
| 261 |
+
parent_init_signature = inspect.signature(super().__init__)
|
| 262 |
+
parent_init_params = parent_init_signature.parameters
|
| 263 |
+
|
| 264 |
+
# Dynamically build a parameter dictionary based on the parameters of the parent class constructor
|
| 265 |
+
init_kwargs = {
|
| 266 |
+
"vae": vae,
|
| 267 |
+
"text_encoder": text_encoder,
|
| 268 |
+
"tokenizer": tokenizer,
|
| 269 |
+
"unet": unet,
|
| 270 |
+
"scheduler": scheduler,
|
| 271 |
+
"safety_checker": safety_checker,
|
| 272 |
+
"feature_extractor": feature_extractor,
|
| 273 |
+
"requires_safety_checker": requires_safety_checker
|
| 274 |
+
}
|
| 275 |
+
if 'image_encoder' in parent_init_params.items():
|
| 276 |
+
init_kwargs['image_encoder'] = image_encoder
|
| 277 |
+
super().__init__(**init_kwargs)
|
| 278 |
+
|
| 279 |
+
self.instance_set = set()
|
| 280 |
+
self.embedding = {}
|
| 281 |
+
|
| 282 |
+
def _encode_prompt(
|
| 283 |
+
self,
|
| 284 |
+
prompts,
|
| 285 |
+
device,
|
| 286 |
+
num_images_per_prompt,
|
| 287 |
+
do_classifier_free_guidance,
|
| 288 |
+
negative_prompt=None,
|
| 289 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 290 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 291 |
+
):
|
| 292 |
+
r"""
|
| 293 |
+
Encodes the prompt into text encoder hidden states.
|
| 294 |
+
|
| 295 |
+
Args:
|
| 296 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 297 |
+
prompt to be encoded
|
| 298 |
+
device: (`torch.device`):
|
| 299 |
+
torch device
|
| 300 |
+
num_images_per_prompt (`int`):
|
| 301 |
+
number of images that should be generated per prompt
|
| 302 |
+
do_classifier_free_guidance (`bool`):
|
| 303 |
+
whether to use classifier free guidance or not
|
| 304 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 305 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 306 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 307 |
+
less than `1`).
|
| 308 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 309 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 310 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 311 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 312 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 313 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 314 |
+
argument.
|
| 315 |
+
"""
|
| 316 |
+
if prompts is not None and isinstance(prompts, str):
|
| 317 |
+
batch_size = 1
|
| 318 |
+
elif prompts is not None and isinstance(prompts, list):
|
| 319 |
+
batch_size = len(prompts)
|
| 320 |
+
else:
|
| 321 |
+
batch_size = prompt_embeds.shape[0]
|
| 322 |
+
|
| 323 |
+
prompt_embeds_none_flag = (prompt_embeds is None)
|
| 324 |
+
prompt_embeds_list = []
|
| 325 |
+
embeds_pooler_list = []
|
| 326 |
+
for prompt in prompts:
|
| 327 |
+
if prompt_embeds_none_flag:
|
| 328 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
| 329 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 330 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
| 331 |
+
|
| 332 |
+
text_inputs = self.tokenizer(
|
| 333 |
+
prompt,
|
| 334 |
+
padding="max_length",
|
| 335 |
+
max_length=self.tokenizer.model_max_length,
|
| 336 |
+
truncation=True,
|
| 337 |
+
return_tensors="pt",
|
| 338 |
+
)
|
| 339 |
+
text_input_ids = text_inputs.input_ids
|
| 340 |
+
untruncated_ids = self.tokenizer(
|
| 341 |
+
prompt, padding="longest", return_tensors="pt"
|
| 342 |
+
).input_ids
|
| 343 |
+
|
| 344 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[
|
| 345 |
+
-1
|
| 346 |
+
] and not torch.equal(text_input_ids, untruncated_ids):
|
| 347 |
+
removed_text = self.tokenizer.batch_decode(
|
| 348 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
| 349 |
+
)
|
| 350 |
+
logger.warning(
|
| 351 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 352 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
if (
|
| 356 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
| 357 |
+
and self.text_encoder.config.use_attention_mask
|
| 358 |
+
):
|
| 359 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
| 360 |
+
else:
|
| 361 |
+
attention_mask = None
|
| 362 |
+
|
| 363 |
+
prompt_embeds = self.text_encoder(
|
| 364 |
+
text_input_ids.to(device),
|
| 365 |
+
attention_mask=attention_mask,
|
| 366 |
+
)
|
| 367 |
+
embeds_pooler = prompt_embeds.pooler_output
|
| 368 |
+
prompt_embeds = prompt_embeds[0]
|
| 369 |
+
|
| 370 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 371 |
+
embeds_pooler = embeds_pooler.to(dtype=self.text_encoder.dtype, device=device)
|
| 372 |
+
|
| 373 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 374 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 375 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 376 |
+
embeds_pooler = embeds_pooler.repeat(1, num_images_per_prompt)
|
| 377 |
+
prompt_embeds = prompt_embeds.view(
|
| 378 |
+
bs_embed * num_images_per_prompt, seq_len, -1
|
| 379 |
+
)
|
| 380 |
+
embeds_pooler = embeds_pooler.view(
|
| 381 |
+
bs_embed * num_images_per_prompt, -1
|
| 382 |
+
)
|
| 383 |
+
prompt_embeds_list.append(prompt_embeds)
|
| 384 |
+
embeds_pooler_list.append(embeds_pooler)
|
| 385 |
+
prompt_embeds = torch.cat(prompt_embeds_list, dim=0)
|
| 386 |
+
embeds_pooler = torch.cat(embeds_pooler_list, dim=0)
|
| 387 |
+
# negative_prompt_embeds: (prompt_nums[0]+prompt_nums[1]+...prompt_nums[n], token_num, token_channel), <class 'torch.Tensor'>
|
| 388 |
+
|
| 389 |
+
# get unconditional embeddings for classifier free guidance
|
| 390 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 391 |
+
uncond_tokens: List[str]
|
| 392 |
+
if negative_prompt is None:
|
| 393 |
+
negative_prompt = "worst quality, low quality, bad anatomy"
|
| 394 |
+
uncond_tokens = [negative_prompt] * batch_size
|
| 395 |
+
|
| 396 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
| 397 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
| 398 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
| 399 |
+
|
| 400 |
+
max_length = prompt_embeds.shape[1]
|
| 401 |
+
uncond_input = self.tokenizer(
|
| 402 |
+
uncond_tokens,
|
| 403 |
+
padding="max_length",
|
| 404 |
+
max_length=max_length,
|
| 405 |
+
truncation=True,
|
| 406 |
+
return_tensors="pt",
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
if (
|
| 410 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
| 411 |
+
and self.text_encoder.config.use_attention_mask
|
| 412 |
+
):
|
| 413 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
| 414 |
+
else:
|
| 415 |
+
attention_mask = None
|
| 416 |
+
|
| 417 |
+
negative_prompt_embeds = self.text_encoder(
|
| 418 |
+
uncond_input.input_ids.to(device),
|
| 419 |
+
attention_mask=attention_mask,
|
| 420 |
+
)
|
| 421 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
| 422 |
+
|
| 423 |
+
if do_classifier_free_guidance:
|
| 424 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
| 425 |
+
seq_len = negative_prompt_embeds.shape[1]
|
| 426 |
+
|
| 427 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
| 428 |
+
dtype=self.text_encoder.dtype, device=device
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
| 432 |
+
1, num_images_per_prompt, 1
|
| 433 |
+
)
|
| 434 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
| 435 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
| 436 |
+
)
|
| 437 |
+
# negative_prompt_embeds: (len(prompt_nums), token_num, token_channel), <class 'torch.Tensor'>
|
| 438 |
+
|
| 439 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 440 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 441 |
+
# to avoid doing two forward passes
|
| 442 |
+
final_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 443 |
+
|
| 444 |
+
return final_prompt_embeds, prompt_embeds, embeds_pooler[:, None, :]
|
| 445 |
+
|
| 446 |
+
def check_inputs(
|
| 447 |
+
self,
|
| 448 |
+
prompt,
|
| 449 |
+
token_indices,
|
| 450 |
+
bboxes,
|
| 451 |
+
height,
|
| 452 |
+
width,
|
| 453 |
+
callback_steps,
|
| 454 |
+
negative_prompt=None,
|
| 455 |
+
prompt_embeds=None,
|
| 456 |
+
negative_prompt_embeds=None,
|
| 457 |
+
):
|
| 458 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 459 |
+
raise ValueError(
|
| 460 |
+
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
if (callback_steps is None) or (
|
| 464 |
+
callback_steps is not None
|
| 465 |
+
and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 466 |
+
):
|
| 467 |
+
raise ValueError(
|
| 468 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 469 |
+
f" {type(callback_steps)}."
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
if prompt is not None and prompt_embeds is not None:
|
| 473 |
+
raise ValueError(
|
| 474 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 475 |
+
" only forward one of the two."
|
| 476 |
+
)
|
| 477 |
+
elif prompt is None and prompt_embeds is None:
|
| 478 |
+
raise ValueError(
|
| 479 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 480 |
+
)
|
| 481 |
+
elif prompt is not None and (
|
| 482 |
+
not isinstance(prompt, str) and not isinstance(prompt, list)
|
| 483 |
+
):
|
| 484 |
+
raise ValueError(
|
| 485 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 489 |
+
raise ValueError(
|
| 490 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 491 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 495 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 496 |
+
raise ValueError(
|
| 497 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 498 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 499 |
+
f" {negative_prompt_embeds.shape}."
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
if token_indices is not None:
|
| 503 |
+
if isinstance(token_indices, list):
|
| 504 |
+
if isinstance(token_indices[0], list):
|
| 505 |
+
if isinstance(token_indices[0][0], list):
|
| 506 |
+
token_indices_batch_size = len(token_indices)
|
| 507 |
+
elif isinstance(token_indices[0][0], int):
|
| 508 |
+
token_indices_batch_size = 1
|
| 509 |
+
else:
|
| 510 |
+
raise TypeError(
|
| 511 |
+
"`token_indices` must be a list of lists of integers or a list of integers."
|
| 512 |
+
)
|
| 513 |
+
else:
|
| 514 |
+
raise TypeError(
|
| 515 |
+
"`token_indices` must be a list of lists of integers or a list of integers."
|
| 516 |
+
)
|
| 517 |
+
else:
|
| 518 |
+
raise TypeError(
|
| 519 |
+
"`token_indices` must be a list of lists of integers or a list of integers."
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
if bboxes is not None:
|
| 523 |
+
if isinstance(bboxes, list):
|
| 524 |
+
if isinstance(bboxes[0], list):
|
| 525 |
+
if (
|
| 526 |
+
isinstance(bboxes[0][0], list)
|
| 527 |
+
and len(bboxes[0][0]) == 4
|
| 528 |
+
and all(isinstance(x, float) for x in bboxes[0][0])
|
| 529 |
+
):
|
| 530 |
+
bboxes_batch_size = len(bboxes)
|
| 531 |
+
elif (
|
| 532 |
+
isinstance(bboxes[0], list)
|
| 533 |
+
and len(bboxes[0]) == 4
|
| 534 |
+
and all(isinstance(x, float) for x in bboxes[0])
|
| 535 |
+
):
|
| 536 |
+
bboxes_batch_size = 1
|
| 537 |
+
else:
|
| 538 |
+
print(isinstance(bboxes[0], list), len(bboxes[0]))
|
| 539 |
+
raise TypeError(
|
| 540 |
+
"`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats."
|
| 541 |
+
)
|
| 542 |
+
else:
|
| 543 |
+
print(isinstance(bboxes[0], list), len(bboxes[0]))
|
| 544 |
+
raise TypeError(
|
| 545 |
+
"`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats."
|
| 546 |
+
)
|
| 547 |
+
else:
|
| 548 |
+
print(isinstance(bboxes[0], list), len(bboxes[0]))
|
| 549 |
+
raise TypeError(
|
| 550 |
+
"`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats."
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
if prompt is not None and isinstance(prompt, str):
|
| 554 |
+
prompt_batch_size = 1
|
| 555 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 556 |
+
prompt_batch_size = len(prompt)
|
| 557 |
+
elif prompt_embeds is not None:
|
| 558 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
| 559 |
+
|
| 560 |
+
if token_indices_batch_size != prompt_batch_size:
|
| 561 |
+
raise ValueError(
|
| 562 |
+
f"token indices batch size must be same as prompt batch size. token indices batch size: {token_indices_batch_size}, prompt batch size: {prompt_batch_size}"
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
if bboxes_batch_size != prompt_batch_size:
|
| 566 |
+
raise ValueError(
|
| 567 |
+
f"bbox batch size must be same as prompt batch size. bbox batch size: {bboxes_batch_size}, prompt batch size: {prompt_batch_size}"
|
| 568 |
+
)
|
| 569 |
+
|
| 570 |
+
def get_indices(self, prompt: str) -> Dict[str, int]:
|
| 571 |
+
"""Utility function to list the indices of the tokens you wish to alte"""
|
| 572 |
+
ids = self.tokenizer(prompt).input_ids
|
| 573 |
+
indices = {
|
| 574 |
+
i: tok
|
| 575 |
+
for tok, i in zip(
|
| 576 |
+
self.tokenizer.convert_ids_to_tokens(ids), range(len(ids))
|
| 577 |
+
)
|
| 578 |
+
}
|
| 579 |
+
return indices
|
| 580 |
+
|
| 581 |
+
@staticmethod
|
| 582 |
+
def draw_box(pil_img: Image, bboxes: List[List[float]]) -> Image:
|
| 583 |
+
"""Utility function to draw bbox on the image"""
|
| 584 |
+
width, height = pil_img.size
|
| 585 |
+
draw = ImageDraw.Draw(pil_img)
|
| 586 |
+
|
| 587 |
+
for obj_box in bboxes:
|
| 588 |
+
x_min, y_min, x_max, y_max = (
|
| 589 |
+
obj_box[0] * width,
|
| 590 |
+
obj_box[1] * height,
|
| 591 |
+
obj_box[2] * width,
|
| 592 |
+
obj_box[3] * height,
|
| 593 |
+
)
|
| 594 |
+
draw.rectangle(
|
| 595 |
+
[int(x_min), int(y_min), int(x_max), int(y_max)],
|
| 596 |
+
outline="red",
|
| 597 |
+
width=4,
|
| 598 |
+
)
|
| 599 |
+
|
| 600 |
+
return pil_img
|
| 601 |
+
|
| 602 |
+
|
| 603 |
+
@staticmethod
|
| 604 |
+
def draw_box_desc(pil_img: Image, bboxes: List[List[float]], prompt: List[str]) -> Image:
|
| 605 |
+
"""Utility function to draw bbox on the image"""
|
| 606 |
+
color_list = ['red', 'blue', 'yellow', 'purple', 'green', 'black', 'brown', 'orange', 'white', 'gray']
|
| 607 |
+
width, height = pil_img.size
|
| 608 |
+
draw = ImageDraw.Draw(pil_img)
|
| 609 |
+
font_folder = os.path.dirname(os.path.dirname(__file__))
|
| 610 |
+
font_path = os.path.join(font_folder, 'Rainbow-Party-2.ttf')
|
| 611 |
+
font = ImageFont.truetype(font_path, 30)
|
| 612 |
+
|
| 613 |
+
for box_id in range(len(bboxes)):
|
| 614 |
+
obj_box = bboxes[box_id]
|
| 615 |
+
text = prompt[box_id]
|
| 616 |
+
fill = 'black'
|
| 617 |
+
for color in prompt[box_id].split(' '):
|
| 618 |
+
if color in color_list:
|
| 619 |
+
fill = color
|
| 620 |
+
text = text.split(',')[0]
|
| 621 |
+
x_min, y_min, x_max, y_max = (
|
| 622 |
+
obj_box[0] * width,
|
| 623 |
+
obj_box[1] * height,
|
| 624 |
+
obj_box[2] * width,
|
| 625 |
+
obj_box[3] * height,
|
| 626 |
+
)
|
| 627 |
+
draw.rectangle(
|
| 628 |
+
[int(x_min), int(y_min), int(x_max), int(y_max)],
|
| 629 |
+
outline=fill,
|
| 630 |
+
width=4,
|
| 631 |
+
)
|
| 632 |
+
draw.text((int(x_min), int(y_min)), text, fill=fill, font=font)
|
| 633 |
+
|
| 634 |
+
return pil_img
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
@torch.no_grad()
|
| 638 |
+
def __call__(
|
| 639 |
+
self,
|
| 640 |
+
prompt: List[List[str]] = None,
|
| 641 |
+
bboxes: List[List[List[float]]] = None,
|
| 642 |
+
height: Optional[int] = None,
|
| 643 |
+
width: Optional[int] = None,
|
| 644 |
+
num_inference_steps: int = 50,
|
| 645 |
+
guidance_scale: float = 7.5,
|
| 646 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 647 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 648 |
+
eta: float = 0.0,
|
| 649 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 650 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 651 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 652 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 653 |
+
output_type: Optional[str] = "pil",
|
| 654 |
+
return_dict: bool = True,
|
| 655 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 656 |
+
callback_steps: int = 1,
|
| 657 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 658 |
+
MIGCsteps=20,
|
| 659 |
+
NaiveFuserSteps=-1,
|
| 660 |
+
ca_scale=None,
|
| 661 |
+
ea_scale=None,
|
| 662 |
+
sac_scale=None,
|
| 663 |
+
aug_phase_with_and=False,
|
| 664 |
+
sa_preserve=False,
|
| 665 |
+
use_sa_preserve=False,
|
| 666 |
+
clear_set=False,
|
| 667 |
+
GUI_progress=None
|
| 668 |
+
):
|
| 669 |
+
r"""
|
| 670 |
+
Function invoked when calling the pipeline for generation.
|
| 671 |
+
|
| 672 |
+
Args:
|
| 673 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 674 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 675 |
+
instead.
|
| 676 |
+
token_indices (Union[List[List[List[int]]], List[List[int]]], optional):
|
| 677 |
+
The list of the indexes in the prompt to layout. Defaults to None.
|
| 678 |
+
bboxes (Union[List[List[List[float]]], List[List[float]]], optional):
|
| 679 |
+
The bounding boxes of the indexes to maintain layout in the image. Defaults to None.
|
| 680 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 681 |
+
The height in pixels of the generated image.
|
| 682 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 683 |
+
The width in pixels of the generated image.
|
| 684 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 685 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 686 |
+
expense of slower inference.
|
| 687 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 688 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 689 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 690 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 691 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 692 |
+
usually at the expense of lower image quality.
|
| 693 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 694 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 695 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 696 |
+
less than `1`).
|
| 697 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 698 |
+
The number of images to generate per prompt.
|
| 699 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 700 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
| 701 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
| 702 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 703 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 704 |
+
to make generation deterministic.
|
| 705 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 706 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 707 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 708 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 709 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 710 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 711 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 712 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 713 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 714 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 715 |
+
argument.
|
| 716 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 717 |
+
The output format of the generate image. Choose between
|
| 718 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 719 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 720 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 721 |
+
plain tuple.
|
| 722 |
+
callback (`Callable`, *optional*):
|
| 723 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
| 724 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
| 725 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 726 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
| 727 |
+
called at every step.
|
| 728 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 729 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 730 |
+
`self.processor` in
|
| 731 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 732 |
+
max_guidance_iter (`int`, *optional*, defaults to `10`):
|
| 733 |
+
The maximum number of iterations for the layout guidance on attention maps in diffusion mode.
|
| 734 |
+
max_guidance_iter_per_step (`int`, *optional*, defaults to `5`):
|
| 735 |
+
The maximum number of iterations to run during each time step for layout guidance.
|
| 736 |
+
scale_factor (`int`, *optional*, defaults to `50`):
|
| 737 |
+
The scale factor used to update the latents during optimization.
|
| 738 |
+
|
| 739 |
+
Examples:
|
| 740 |
+
|
| 741 |
+
Returns:
|
| 742 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 743 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
| 744 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
| 745 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
| 746 |
+
(nsfw) content, according to the `safety_checker`.
|
| 747 |
+
"""
|
| 748 |
+
def aug_phase_with_and_function(phase, instance_num):
|
| 749 |
+
instance_num = min(instance_num, 7)
|
| 750 |
+
copy_phase = [phase] * instance_num
|
| 751 |
+
phase = ', and '.join(copy_phase)
|
| 752 |
+
return phase
|
| 753 |
+
|
| 754 |
+
if aug_phase_with_and:
|
| 755 |
+
instance_num = len(prompt[0]) - 1
|
| 756 |
+
for i in range(1, len(prompt[0])):
|
| 757 |
+
prompt[0][i] = aug_phase_with_and_function(prompt[0][i],
|
| 758 |
+
instance_num)
|
| 759 |
+
# 0. Default height and width to unet
|
| 760 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 761 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 762 |
+
|
| 763 |
+
# 2. Define call parameters
|
| 764 |
+
if prompt is not None and isinstance(prompt, str):
|
| 765 |
+
batch_size = 1
|
| 766 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 767 |
+
batch_size = len(prompt)
|
| 768 |
+
else:
|
| 769 |
+
batch_size = prompt_embeds.shape[0]
|
| 770 |
+
|
| 771 |
+
prompt_nums = [0] * len(prompt)
|
| 772 |
+
for i, _ in enumerate(prompt):
|
| 773 |
+
prompt_nums[i] = len(_)
|
| 774 |
+
|
| 775 |
+
device = self._execution_device
|
| 776 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 777 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 778 |
+
# corresponds to doing no classifier free guidance.
|
| 779 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 780 |
+
|
| 781 |
+
# 3. Encode input prompt
|
| 782 |
+
prompt_embeds, cond_prompt_embeds, embeds_pooler = self._encode_prompt(
|
| 783 |
+
prompt,
|
| 784 |
+
device,
|
| 785 |
+
num_images_per_prompt,
|
| 786 |
+
do_classifier_free_guidance,
|
| 787 |
+
negative_prompt,
|
| 788 |
+
prompt_embeds=prompt_embeds,
|
| 789 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 790 |
+
)
|
| 791 |
+
# print(prompt_embeds.shape) 3 77 768
|
| 792 |
+
|
| 793 |
+
# 4. Prepare timesteps
|
| 794 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 795 |
+
timesteps = self.scheduler.timesteps
|
| 796 |
+
|
| 797 |
+
# 5. Prepare latent variables
|
| 798 |
+
num_channels_latents = self.unet.config.in_channels
|
| 799 |
+
latents = self.prepare_latents(
|
| 800 |
+
batch_size * num_images_per_prompt,
|
| 801 |
+
num_channels_latents,
|
| 802 |
+
height,
|
| 803 |
+
width,
|
| 804 |
+
prompt_embeds.dtype,
|
| 805 |
+
device,
|
| 806 |
+
generator,
|
| 807 |
+
latents,
|
| 808 |
+
)
|
| 809 |
+
|
| 810 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 811 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 812 |
+
|
| 813 |
+
# 7. Denoising loop
|
| 814 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 815 |
+
|
| 816 |
+
if clear_set:
|
| 817 |
+
self.instance_set = set()
|
| 818 |
+
self.embedding = {}
|
| 819 |
+
|
| 820 |
+
now_set = set()
|
| 821 |
+
for i in range(len(bboxes[0])):
|
| 822 |
+
now_set.add((tuple(bboxes[0][i]), prompt[0][i + 1]))
|
| 823 |
+
|
| 824 |
+
mask_set = (now_set | self.instance_set) - (now_set & self.instance_set)
|
| 825 |
+
self.instance_set = now_set
|
| 826 |
+
|
| 827 |
+
guidance_mask = np.full((4, height // 8, width // 8), 1.0)
|
| 828 |
+
|
| 829 |
+
for bbox, _ in mask_set:
|
| 830 |
+
w_min = max(0, int(width * bbox[0] // 8) - 5)
|
| 831 |
+
w_max = min(width, int(width * bbox[2] // 8) + 5)
|
| 832 |
+
h_min = max(0, int(height * bbox[1] // 8) - 5)
|
| 833 |
+
h_max = min(height, int(height * bbox[3] // 8) + 5)
|
| 834 |
+
guidance_mask[:, h_min:h_max, w_min:w_max] = 0
|
| 835 |
+
|
| 836 |
+
kernal_size = 5
|
| 837 |
+
guidance_mask = uniform_filter(
|
| 838 |
+
guidance_mask, axes = (1, 2), size = kernal_size
|
| 839 |
+
)
|
| 840 |
+
|
| 841 |
+
guidance_mask = torch.from_numpy(guidance_mask).to(self.device).unsqueeze(0)
|
| 842 |
+
|
| 843 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 844 |
+
for i, t in enumerate(timesteps):
|
| 845 |
+
if GUI_progress is not None:
|
| 846 |
+
GUI_progress[0] = int((i + 1) / len(timesteps) * 100)
|
| 847 |
+
# expand the latents if we are doing classifier free guidance
|
| 848 |
+
latent_model_input = (
|
| 849 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 850 |
+
)
|
| 851 |
+
latent_model_input = self.scheduler.scale_model_input(
|
| 852 |
+
latent_model_input, t
|
| 853 |
+
)
|
| 854 |
+
|
| 855 |
+
# predict the noise residual
|
| 856 |
+
cross_attention_kwargs = {'prompt_nums': prompt_nums,
|
| 857 |
+
'bboxes': bboxes,
|
| 858 |
+
'ith': i,
|
| 859 |
+
'embeds_pooler': embeds_pooler,
|
| 860 |
+
'timestep': t,
|
| 861 |
+
'height': height,
|
| 862 |
+
'width': width,
|
| 863 |
+
'MIGCsteps': MIGCsteps,
|
| 864 |
+
'NaiveFuserSteps': NaiveFuserSteps,
|
| 865 |
+
'ca_scale': ca_scale,
|
| 866 |
+
'ea_scale': ea_scale,
|
| 867 |
+
'sac_scale': sac_scale,
|
| 868 |
+
'sa_preserve': sa_preserve,
|
| 869 |
+
'use_sa_preserve': use_sa_preserve}
|
| 870 |
+
|
| 871 |
+
self.unet.eval()
|
| 872 |
+
noise_pred = self.unet(
|
| 873 |
+
latent_model_input,
|
| 874 |
+
t,
|
| 875 |
+
encoder_hidden_states=prompt_embeds,
|
| 876 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 877 |
+
).sample
|
| 878 |
+
|
| 879 |
+
# perform guidance
|
| 880 |
+
if do_classifier_free_guidance:
|
| 881 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 882 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
| 883 |
+
noise_pred_text - noise_pred_uncond
|
| 884 |
+
)
|
| 885 |
+
|
| 886 |
+
step_output = self.scheduler.step(
|
| 887 |
+
noise_pred, t, latents, **extra_step_kwargs
|
| 888 |
+
)
|
| 889 |
+
latents = step_output.prev_sample
|
| 890 |
+
|
| 891 |
+
ori_input = latents.detach().clone()
|
| 892 |
+
if use_sa_preserve and i in self.embedding:
|
| 893 |
+
latents = (
|
| 894 |
+
latents * (1.0 - guidance_mask)
|
| 895 |
+
+ torch.from_numpy(self.embedding[i]).to(latents.device) * guidance_mask
|
| 896 |
+
).float()
|
| 897 |
+
|
| 898 |
+
if sa_preserve:
|
| 899 |
+
self.embedding[i] = ori_input.cpu().numpy()
|
| 900 |
+
|
| 901 |
+
# call the callback, if provided
|
| 902 |
+
if i == len(timesteps) - 1 or (
|
| 903 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 904 |
+
):
|
| 905 |
+
progress_bar.update()
|
| 906 |
+
if callback is not None and i % callback_steps == 0:
|
| 907 |
+
callback(i, t, latents)
|
| 908 |
+
|
| 909 |
+
if output_type == "latent":
|
| 910 |
+
image = latents
|
| 911 |
+
elif output_type == "pil":
|
| 912 |
+
# 8. Post-processing
|
| 913 |
+
image = self.decode_latents(latents)
|
| 914 |
+
image = self.numpy_to_pil(image)
|
| 915 |
+
else:
|
| 916 |
+
# 8. Post-processing
|
| 917 |
+
image = self.decode_latents(latents)
|
| 918 |
+
|
| 919 |
+
# Offload last model to CPU
|
| 920 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 921 |
+
self.final_offload_hook.offload()
|
| 922 |
+
|
| 923 |
+
if not return_dict:
|
| 924 |
+
return (image, None)
|
| 925 |
+
|
| 926 |
+
return StableDiffusionPipelineOutput(
|
| 927 |
+
images=image, nsfw_content_detected=None
|
| 928 |
+
)
|
migc/migc_utils.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import yaml
|
| 6 |
+
import random
|
| 7 |
+
from diffusers.utils.import_utils import is_accelerate_available
|
| 8 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 9 |
+
from migc.migc_pipeline import StableDiffusionMIGCPipeline, MIGCProcessor, AttentionStore
|
| 10 |
+
from diffusers import EulerDiscreteScheduler
|
| 11 |
+
if is_accelerate_available():
|
| 12 |
+
from accelerate import init_empty_weights
|
| 13 |
+
from contextlib import nullcontext
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def seed_everything(seed):
|
| 17 |
+
# np.random.seed(seed)
|
| 18 |
+
torch.manual_seed(seed)
|
| 19 |
+
torch.cuda.manual_seed_all(seed)
|
| 20 |
+
random.seed(seed)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
from typing import Callable, Dict, List, Optional, Union
|
| 25 |
+
from collections import defaultdict
|
| 26 |
+
|
| 27 |
+
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
| 28 |
+
|
| 29 |
+
# We need to set Attention Processors for the following keys.
|
| 30 |
+
all_processor_keys = [
|
| 31 |
+
'down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor', 'down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor',
|
| 32 |
+
'down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor', 'down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor',
|
| 33 |
+
'down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor', 'down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor',
|
| 34 |
+
'down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor', 'down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor',
|
| 35 |
+
'down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor', 'down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor',
|
| 36 |
+
'down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor', 'down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor',
|
| 37 |
+
'up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor', 'up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor',
|
| 38 |
+
'up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor', 'up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor',
|
| 39 |
+
'up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor', 'up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor',
|
| 40 |
+
'up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor', 'up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor',
|
| 41 |
+
'up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor', 'up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor',
|
| 42 |
+
'up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor', 'up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor',
|
| 43 |
+
'up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor', 'up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor',
|
| 44 |
+
'up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor', 'up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor',
|
| 45 |
+
'up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor', 'up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor',
|
| 46 |
+
'mid_block.attentions.0.transformer_blocks.0.attn1.processor', 'mid_block.attentions.0.transformer_blocks.0.attn2.processor'
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
def load_migc(unet, attention_store, pretrained_MIGC_path: Union[str, Dict[str, torch.Tensor]], attn_processor,
|
| 50 |
+
**kwargs):
|
| 51 |
+
|
| 52 |
+
state_dict = torch.load(pretrained_MIGC_path, map_location="cpu")
|
| 53 |
+
|
| 54 |
+
# fill attn processors
|
| 55 |
+
attn_processors = {}
|
| 56 |
+
state_dict = state_dict['state_dict']
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
adapter_grouped_dict = defaultdict(dict)
|
| 60 |
+
|
| 61 |
+
# change the key of MIGC.ckpt as the form of diffusers unet
|
| 62 |
+
for key, value in state_dict.items():
|
| 63 |
+
key_list = key.split(".")
|
| 64 |
+
assert 'migc' in key_list
|
| 65 |
+
if 'input_blocks' in key_list:
|
| 66 |
+
model_type = 'down_blocks'
|
| 67 |
+
elif 'middle_block' in key_list:
|
| 68 |
+
model_type = 'mid_block'
|
| 69 |
+
else:
|
| 70 |
+
model_type = 'up_blocks'
|
| 71 |
+
index_number = int(key_list[3])
|
| 72 |
+
if model_type == 'down_blocks':
|
| 73 |
+
input_num1 = str(index_number//3)
|
| 74 |
+
input_num2 = str((index_number%3)-1)
|
| 75 |
+
elif model_type == 'mid_block':
|
| 76 |
+
input_num1 = '0'
|
| 77 |
+
input_num2 = '0'
|
| 78 |
+
else:
|
| 79 |
+
input_num1 = str(index_number//3)
|
| 80 |
+
input_num2 = str(index_number%3)
|
| 81 |
+
attn_key_list = [model_type,input_num1,'attentions',input_num2,'transformer_blocks','0']
|
| 82 |
+
if model_type == 'mid_block':
|
| 83 |
+
attn_key_list = [model_type,'attentions',input_num2,'transformer_blocks','0']
|
| 84 |
+
attn_processor_key = '.'.join(attn_key_list)
|
| 85 |
+
sub_key = '.'.join(key_list[key_list.index('migc'):])
|
| 86 |
+
adapter_grouped_dict[attn_processor_key][sub_key] = value
|
| 87 |
+
|
| 88 |
+
# Create MIGC Processor
|
| 89 |
+
config = {'not_use_migc': False}
|
| 90 |
+
for key, value_dict in adapter_grouped_dict.items():
|
| 91 |
+
dim = value_dict['migc.norm.bias'].shape[0]
|
| 92 |
+
config['C'] = dim
|
| 93 |
+
key_final = key + '.attn2.processor'
|
| 94 |
+
if key_final.startswith("mid_block"):
|
| 95 |
+
place_in_unet = "mid"
|
| 96 |
+
elif key_final.startswith("up_blocks"):
|
| 97 |
+
place_in_unet = "up"
|
| 98 |
+
elif key_final.startswith("down_blocks"):
|
| 99 |
+
place_in_unet = "down"
|
| 100 |
+
|
| 101 |
+
attn_processors[key_final] = attn_processor(config, attention_store, place_in_unet)
|
| 102 |
+
attn_processors[key_final].load_state_dict(value_dict)
|
| 103 |
+
attn_processors[key_final].to(device=unet.device, dtype=unet.dtype)
|
| 104 |
+
|
| 105 |
+
# Create CrossAttention/SelfAttention Processor
|
| 106 |
+
config = {'not_use_migc': True}
|
| 107 |
+
for key in all_processor_keys:
|
| 108 |
+
if key not in attn_processors.keys():
|
| 109 |
+
if key.startswith("mid_block"):
|
| 110 |
+
place_in_unet = "mid"
|
| 111 |
+
elif key.startswith("up_blocks"):
|
| 112 |
+
place_in_unet = "up"
|
| 113 |
+
elif key.startswith("down_blocks"):
|
| 114 |
+
place_in_unet = "down"
|
| 115 |
+
attn_processors[key] = attn_processor(config, attention_store, place_in_unet)
|
| 116 |
+
unet.set_attn_processor(attn_processors)
|
| 117 |
+
attention_store.num_att_layers = 32
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def offlinePipelineSetupWithSafeTensor(sd_safetensors_path):
|
| 121 |
+
project_dir = os.path.dirname(os.path.dirname(__file__))
|
| 122 |
+
migc_ckpt_path = os.path.join(project_dir, 'pretrained_weights/MIGC_SD14.ckpt')
|
| 123 |
+
clip_model_path = os.path.join(project_dir, 'migc_gui_weights/clip/text_encoder')
|
| 124 |
+
clip_tokenizer_path = os.path.join(project_dir, 'migc_gui_weights/clip/tokenizer')
|
| 125 |
+
original_config_file = os.path.join(project_dir, 'migc_gui_weights/v1-inference.yaml')
|
| 126 |
+
ctx = init_empty_weights if is_accelerate_available() else nullcontext
|
| 127 |
+
with ctx():
|
| 128 |
+
# text_encoder = CLIPTextModel(config)
|
| 129 |
+
text_encoder = CLIPTextModel.from_pretrained(clip_model_path)
|
| 130 |
+
tokenizer = CLIPTokenizer.from_pretrained(clip_tokenizer_path)
|
| 131 |
+
pipe = StableDiffusionMIGCPipeline.from_single_file(sd_safetensors_path,
|
| 132 |
+
original_config_file=original_config_file,
|
| 133 |
+
text_encoder=text_encoder,
|
| 134 |
+
tokenizer=tokenizer,
|
| 135 |
+
load_safety_checker=False)
|
| 136 |
+
print('Initializing pipeline')
|
| 137 |
+
pipe.attention_store = AttentionStore()
|
| 138 |
+
from migc.migc_utils import load_migc
|
| 139 |
+
load_migc(pipe.unet , pipe.attention_store,
|
| 140 |
+
migc_ckpt_path, attn_processor=MIGCProcessor)
|
| 141 |
+
|
| 142 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 143 |
+
return pipe
|
requirements.txt
CHANGED
|
@@ -4,4 +4,6 @@ diffusers
|
|
| 4 |
invisible_watermark
|
| 5 |
torch
|
| 6 |
transformers
|
| 7 |
-
xformers
|
|
|
|
|
|
|
|
|
| 4 |
invisible_watermark
|
| 5 |
torch
|
| 6 |
transformers
|
| 7 |
+
xformers
|
| 8 |
+
einops
|
| 9 |
+
scipy
|