File size: 4,872 Bytes
b7f83b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

# References:
#   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
#   https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py

import logging
import os
import warnings

import torch
import torch.nn.functional as F
from torch import Tensor, nn

XFORMERS_AVAILABLE = False


class Attention(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = True,
        proj_bias: bool = True,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        norm_layer: nn.Module = nn.LayerNorm,
        qk_norm: bool = False,
        fused_attn: bool = True,  # use F.scaled_dot_product_attention or not
        rope=None,
        kv_cache=False,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5
        self.fused_attn = fused_attn

        # KV Cache
        self.kv_cache = kv_cache
        self.k_cache: Tensor | None = None
        self.v_cache: Tensor | None = None

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim, bias=proj_bias)
        self.proj_drop = nn.Dropout(proj_drop)
        self.rope = rope

    def clear_kv_cache(self):
        """Clear the KV cache. Should be called between different sequences."""
        if self.k_cache is not None:
            if self.k_cache.is_cuda:
                del self.k_cache
                del self.v_cache
                torch.cuda.empty_cache()
            else:
                del self.k_cache
                del self.v_cache

        self.k_cache = None
        self.v_cache = None

    def forward(self, x: Tensor, pos=None, attn_mask: Tensor | None = None) -> Tensor:
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, self.head_dim)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)

        if self.rope is not None:
            q = self.rope(q, pos)
            k = self.rope(k, pos)

        # --- KV Cache Logic ---
        if self.kv_cache:
            if self.k_cache is not None:
                # if self.k_cache.device != x.device:
                #     self.k_cache = self.k_cache.cuda()
                #     self.v_cache = self.v_cache.cuda()
                # We are in generation mode. Concatenate the new keys and values to the cache.
                # The new k and v have a sequence length of N (usually 1).
                k = torch.cat([self.k_cache.cuda(), k], dim=2)
                v = torch.cat([self.v_cache.cuda(), v], dim=2)
            else:
                # This is the first pass (prompt processing). Initialize the cache.
                self.k_cache = k.cpu()
                self.v_cache = v.cpu()
                self.k_length = k.shape[2]

                return torch.zeros_like(x)  # Return zero tensor for the first pass

        if self.fused_attn:
            x = F.scaled_dot_product_attention(
                q,
                k,
                v,
                attn_mask=attn_mask,
                dropout_p=self.attn_drop.p if self.training else 0.0,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            if attn_mask is not None:
                attn = attn.masked_fill(attn_mask, float("-inf"))
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class MemEffAttention(Attention):
    def forward(self, x: Tensor, attn_bias=None, pos=None, attn_mask=None) -> Tensor:
        assert pos is None
        if not XFORMERS_AVAILABLE:
            if attn_bias is not None:
                raise AssertionError("xFormers is required for using nested tensors")
            return super().forward(x, attn_mask=attn_mask)

        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)

        q, k, v = unbind(qkv, 2)

        x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
        x = x.reshape([B, N, C])

        x = self.proj(x)
        x = self.proj_drop(x)
        return x