hengli commited on
Commit
f661d26
·
1 Parent(s): d8b386f

update hf link

Browse files
Files changed (1) hide show
  1. visual_util.py +9 -3
visual_util.py CHANGED
@@ -76,6 +76,7 @@ def predictions_to_glb(
76
  pred_world_points_conf = predictions.get(
77
  "world_points_conf", np.ones_like(pred_world_points[..., 0])
78
  )
 
79
  else:
80
  print(
81
  "Warning: world_points not found in predictions, falling back to depth-based points"
@@ -84,18 +85,22 @@ def predictions_to_glb(
84
  pred_world_points_conf = predictions.get(
85
  "depth_conf", np.ones_like(pred_world_points[..., 0])
86
  )
 
87
  else:
88
  print("Using Depthmap and Camera Branch")
89
  pred_world_points = predictions["world_points_from_depth"]
90
  pred_world_points_conf = predictions.get(
91
  "depth_conf", np.ones_like(pred_world_points[..., 0])
92
  )
 
 
93
 
94
  # Get images from predictions
95
  images = predictions["images"]
96
  # Use extrinsic matrices instead of pred_extrinsic_list
97
  camera_matrices = predictions["extrinsic"]
98
-
 
99
  if mask_sky:
100
  if target_dir is not None:
101
  import onnxruntime
@@ -154,7 +159,7 @@ def predictions_to_glb(
154
  pred_world_points_conf = pred_world_points_conf[selected_frame_idx][None]
155
  images = images[selected_frame_idx][None]
156
  camera_matrices = camera_matrices[selected_frame_idx][None]
157
-
158
  vertices_3d = pred_world_points.reshape(-1, 3)
159
  # Handle different image formats - check if images need transposing
160
  if images.ndim == 4 and images.shape[1] == 3: # NCHW format
@@ -185,7 +190,8 @@ def predictions_to_glb(
185
  & (colors_rgb[:, 2] > 240)
186
  )
187
  conf_mask = conf_mask & white_bg_mask
188
-
 
189
  vertices_3d = vertices_3d[conf_mask]
190
  colors_rgb = colors_rgb[conf_mask]
191
 
 
76
  pred_world_points_conf = predictions.get(
77
  "world_points_conf", np.ones_like(pred_world_points[..., 0])
78
  )
79
+
80
  else:
81
  print(
82
  "Warning: world_points not found in predictions, falling back to depth-based points"
 
85
  pred_world_points_conf = predictions.get(
86
  "depth_conf", np.ones_like(pred_world_points[..., 0])
87
  )
88
+
89
  else:
90
  print("Using Depthmap and Camera Branch")
91
  pred_world_points = predictions["world_points_from_depth"]
92
  pred_world_points_conf = predictions.get(
93
  "depth_conf", np.ones_like(pred_world_points[..., 0])
94
  )
95
+ print(f"pred_world_points shape: {pred_world_points.shape}")
96
+ print(f"pred_world_points_conf shape: {pred_world_points_conf.shape}")
97
 
98
  # Get images from predictions
99
  images = predictions["images"]
100
  # Use extrinsic matrices instead of pred_extrinsic_list
101
  camera_matrices = predictions["extrinsic"]
102
+ print(f"images shape: {images.shape}")
103
+ print(f"camera_matrices shape: {camera_matrices.shape}")
104
  if mask_sky:
105
  if target_dir is not None:
106
  import onnxruntime
 
159
  pred_world_points_conf = pred_world_points_conf[selected_frame_idx][None]
160
  images = images[selected_frame_idx][None]
161
  camera_matrices = camera_matrices[selected_frame_idx][None]
162
+ # print
163
  vertices_3d = pred_world_points.reshape(-1, 3)
164
  # Handle different image formats - check if images need transposing
165
  if images.ndim == 4 and images.shape[1] == 3: # NCHW format
 
190
  & (colors_rgb[:, 2] > 240)
191
  )
192
  conf_mask = conf_mask & white_bg_mask
193
+ print(f"Total points before filtering: {len(vertices_3d)}")
194
+ print(f"Total points after filtering: {conf_mask.sum()}")
195
  vertices_3d = vertices_3d[conf_mask]
196
  colors_rgb = colors_rgb[conf_mask]
197