Spaces:
Runtime error
Runtime error
| # Smart Parking System - Gradio UI for Hugging Face Spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import matplotlib.pyplot as plt | |
| import matplotlib.patches as patches | |
| from datetime import datetime, timedelta | |
| import cv2 | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| import gradio as gr | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| class StateOfTheArtParkingDetector: | |
| def __init__(self, total_spaces=50): | |
| self.total_spaces = total_spaces | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"π Loading State-of-the-Art Models... Device: {self.device}") | |
| # Load Florence-2 | |
| try: | |
| self.processor = AutoProcessor.from_pretrained( | |
| "microsoft/Florence-2-large", | |
| trust_remote_code=True | |
| ) | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| "microsoft/Florence-2-large", | |
| torch_dtype=torch.float16 if self.device=="cuda" else torch.float32, | |
| trust_remote_code=True | |
| ).to(self.device) | |
| self.florence_available = True | |
| except: | |
| try: | |
| self.processor = AutoProcessor.from_pretrained( | |
| "microsoft/Florence-2-base", | |
| trust_remote_code=True | |
| ) | |
| self.model = AutoModelForCausalLM.from_pretrained( | |
| "microsoft/Florence-2-base", | |
| torch_dtype=torch.float16 if self.device=="cuda" else torch.float32, | |
| trust_remote_code=True | |
| ).to(self.device) | |
| self.florence_available = True | |
| except: | |
| self.florence_available = False | |
| # Load YOLO-World | |
| try: | |
| from ultralytics import YOLO | |
| self.yolo_world = YOLO('yolov8x-worldv2.pt') | |
| self.yolo_world_available = True | |
| except: | |
| self.yolo_world_available = False | |
| # Detection methods remain the same as your original code | |
| # detect_with_florence, detect_with_yolo_world, advanced_cv_detection, | |
| # merge_all_detections, calculate_iou, create_annotated_image, process_image | |
| # Initialize detector | |
| detector = StateOfTheArtParkingDetector() | |
| # Gradio Interface | |
| with gr.Blocks( | |
| theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue"), | |
| css=""" | |
| .gradio-container { font-family: 'Segoe UI', Arial, sans-serif; } | |
| .main-header { text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
| color: white; padding: 30px; border-radius: 10px; margin-bottom: 20px; } | |
| """ | |
| ) as demo: | |
| gr.HTML(""" | |
| <div class="main-header"> | |
| <h1 style="margin:0; font-size:42px;">π ΏοΈ Smart Parking Management System</h1> | |
| <p style="margin:10px 0 0 0; font-size:18px; opacity:0.9;">Powered by AI Vision Transformers β’ Real-time Detection</p> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π€ Upload Parking Lot Image") | |
| input_image = gr.Image(label="Parking Lot Image", type="pil", height=400) | |
| total_spaces_slider = gr.Slider(minimum=10, maximum=200, value=50, step=5, | |
| label="π ΏοΈ Total Parking Spaces", | |
| info="Set the total capacity of your parking lot") | |
| analyze_btn = gr.Button("π Analyze Parking Lot", variant="primary", size="lg") | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π― Detection Results") | |
| output_image = gr.Image(label="Detected Vehicles", type="pil", height=400) | |
| status_html = gr.HTML(label="Parking Status") | |
| with gr.Row(): | |
| with gr.Column(): | |
| stats_output = gr.Textbox(label="π Detailed Statistics", lines=15, max_lines=20) | |
| analyze_btn.click(fn=detector.process_image, inputs=[input_image, total_spaces_slider], | |
| outputs=[output_image, status_html, stats_output]) | |
| demo.launch() | |