Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,9 @@
|
|
| 1 |
-
# Smart Parking System -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
|
@@ -12,93 +17,171 @@ import gradio as gr
|
|
| 12 |
import warnings
|
| 13 |
warnings.filterwarnings('ignore')
|
| 14 |
|
|
|
|
| 15 |
class StateOfTheArtParkingDetector:
|
| 16 |
def __init__(self, total_spaces=50):
|
| 17 |
self.total_spaces = total_spaces
|
| 18 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
|
| 20 |
-
print(f"🚀 Loading
|
| 21 |
-
|
| 22 |
-
#
|
|
|
|
| 23 |
try:
|
| 24 |
-
self.processor = AutoProcessor.from_pretrained(
|
| 25 |
-
"microsoft/Florence-2-large",
|
| 26 |
-
trust_remote_code=True
|
| 27 |
-
)
|
| 28 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
-
"microsoft/Florence-2-
|
| 30 |
torch_dtype=torch.float16 if self.device=="cuda" else torch.float32,
|
| 31 |
trust_remote_code=True
|
| 32 |
).to(self.device)
|
| 33 |
self.florence_available = True
|
|
|
|
| 34 |
except:
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
trust_remote_code=True
|
| 39 |
-
)
|
| 40 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
-
"microsoft/Florence-2-base",
|
| 42 |
-
torch_dtype=torch.float16 if self.device=="cuda" else torch.float32,
|
| 43 |
-
trust_remote_code=True
|
| 44 |
-
).to(self.device)
|
| 45 |
-
self.florence_available = True
|
| 46 |
-
except:
|
| 47 |
-
self.florence_available = False
|
| 48 |
-
|
| 49 |
-
# Load YOLO-World
|
| 50 |
try:
|
| 51 |
from ultralytics import YOLO
|
| 52 |
self.yolo_world = YOLO('yolov8x-worldv2.pt')
|
| 53 |
self.yolo_world_available = True
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
self.yolo_world_available = False
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
detector = StateOfTheArtParkingDetector()
|
| 63 |
|
| 64 |
-
# Gradio Interface
|
| 65 |
-
with gr.Blocks(
|
| 66 |
-
|
| 67 |
-
css="""
|
| 68 |
-
.gradio-container { font-family: 'Segoe UI', Arial, sans-serif; }
|
| 69 |
-
.main-header { text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 70 |
-
color: white; padding: 30px; border-radius: 10px; margin-bottom: 20px; }
|
| 71 |
-
"""
|
| 72 |
-
) as demo:
|
| 73 |
-
|
| 74 |
-
gr.HTML("""
|
| 75 |
-
<div class="main-header">
|
| 76 |
-
<h1 style="margin:0; font-size:42px;">🅿️ Smart Parking Management System</h1>
|
| 77 |
-
<p style="margin:10px 0 0 0; font-size:18px; opacity:0.9;">Powered by AI Vision Transformers • Real-time Detection</p>
|
| 78 |
-
</div>
|
| 79 |
-
""")
|
| 80 |
-
|
| 81 |
-
with gr.Row():
|
| 82 |
-
with gr.Column(scale=1):
|
| 83 |
-
gr.Markdown("### 📤 Upload Parking Lot Image")
|
| 84 |
-
input_image = gr.Image(label="Parking Lot Image", type="pil", height=400)
|
| 85 |
-
|
| 86 |
-
total_spaces_slider = gr.Slider(minimum=10, maximum=200, value=50, step=5,
|
| 87 |
-
label="🅿️ Total Parking Spaces",
|
| 88 |
-
info="Set the total capacity of your parking lot")
|
| 89 |
-
|
| 90 |
-
analyze_btn = gr.Button("🔍 Analyze Parking Lot", variant="primary", size="lg")
|
| 91 |
-
|
| 92 |
-
with gr.Column(scale=1):
|
| 93 |
-
gr.Markdown("### 🎯 Detection Results")
|
| 94 |
-
output_image = gr.Image(label="Detected Vehicles", type="pil", height=400)
|
| 95 |
-
status_html = gr.HTML(label="Parking Status")
|
| 96 |
-
|
| 97 |
with gr.Row():
|
| 98 |
with gr.Column():
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
demo.launch()
|
|
|
|
| 1 |
+
# Smart Parking System - Hugging Face Spaces Version
|
| 2 |
+
# Run this in Hugging Face Spaces
|
| 3 |
+
|
| 4 |
+
!pip install -q torch torchvision transformers pillow matplotlib numpy opencv-python-headless timm einops gradio
|
| 5 |
+
!pip install -q git+https://github.com/facebookresearch/segment-anything-2.git
|
| 6 |
+
!pip install -q ultralytics supervision
|
| 7 |
|
| 8 |
import torch
|
| 9 |
import numpy as np
|
|
|
|
| 17 |
import warnings
|
| 18 |
warnings.filterwarnings('ignore')
|
| 19 |
|
| 20 |
+
|
| 21 |
class StateOfTheArtParkingDetector:
|
| 22 |
def __init__(self, total_spaces=50):
|
| 23 |
self.total_spaces = total_spaces
|
| 24 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
|
| 26 |
+
print(f"🚀 Loading Models... Device: {self.device}")
|
| 27 |
+
|
| 28 |
+
# Try Florence-2 (optional, can skip if CPU)
|
| 29 |
+
self.florence_available = False
|
| 30 |
try:
|
| 31 |
+
self.processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
| 32 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
+
"microsoft/Florence-2-base",
|
| 34 |
torch_dtype=torch.float16 if self.device=="cuda" else torch.float32,
|
| 35 |
trust_remote_code=True
|
| 36 |
).to(self.device)
|
| 37 |
self.florence_available = True
|
| 38 |
+
print("✅ Florence-2 loaded")
|
| 39 |
except:
|
| 40 |
+
print("⚠️ Florence-2 unavailable, skipping")
|
| 41 |
+
|
| 42 |
+
# YOLO-World
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
try:
|
| 44 |
from ultralytics import YOLO
|
| 45 |
self.yolo_world = YOLO('yolov8x-worldv2.pt')
|
| 46 |
self.yolo_world_available = True
|
| 47 |
+
print("✅ YOLO-World loaded")
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"⚠️ YOLO-World unavailable: {e}")
|
| 50 |
self.yolo_world_available = False
|
| 51 |
|
| 52 |
+
# Florence detection
|
| 53 |
+
def detect_with_florence(self, image):
|
| 54 |
+
if not self.florence_available:
|
| 55 |
+
return []
|
| 56 |
+
# Minimal placeholder to avoid crash
|
| 57 |
+
return []
|
| 58 |
+
|
| 59 |
+
# YOLO-World detection
|
| 60 |
+
def detect_with_yolo_world(self, image):
|
| 61 |
+
if not self.yolo_world_available:
|
| 62 |
+
return []
|
| 63 |
+
self.yolo_world.set_classes([
|
| 64 |
+
"car", "vehicle", "automobile", "truck", "van",
|
| 65 |
+
"SUV", "sedan", "parked car", "parking space with car"
|
| 66 |
+
])
|
| 67 |
+
img_array = np.array(image)
|
| 68 |
+
results = self.yolo_world(img_array, conf=0.15, iou=0.3, verbose=False)
|
| 69 |
+
detections = []
|
| 70 |
+
for result in results:
|
| 71 |
+
boxes = result.boxes
|
| 72 |
+
for box in boxes:
|
| 73 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
| 74 |
+
conf = float(box.conf[0])
|
| 75 |
+
detections.append({'box':[int(x1), int(y1), int(x2), int(y2)],
|
| 76 |
+
'label':'car', 'score':conf, 'method':'yolo-world'})
|
| 77 |
+
return detections
|
| 78 |
+
|
| 79 |
+
# Simple CV detection fallback
|
| 80 |
+
def advanced_cv_detection(self, image):
|
| 81 |
+
img_array = np.array(image)
|
| 82 |
+
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
| 83 |
+
edges = cv2.Canny(gray, 30, 100)
|
| 84 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7,7))
|
| 85 |
+
closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel, iterations=2)
|
| 86 |
+
contours, _ = cv2.findContours(closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 87 |
+
h, w = gray.shape
|
| 88 |
+
min_area, max_area = (h*w)//600, (h*w)//20
|
| 89 |
+
detections = []
|
| 90 |
+
for contour in contours:
|
| 91 |
+
area = cv2.contourArea(contour)
|
| 92 |
+
if min_area < area < max_area:
|
| 93 |
+
x, y, cw, ch = cv2.boundingRect(contour)
|
| 94 |
+
aspect_ratio = cw/ch if ch>0 else 0
|
| 95 |
+
if 0.4<aspect_ratio<3.5:
|
| 96 |
+
hull = cv2.convexHull(contour)
|
| 97 |
+
hull_area = cv2.contourArea(hull)
|
| 98 |
+
solidity = area/hull_area if hull_area>0 else 0
|
| 99 |
+
if solidity > 0.4:
|
| 100 |
+
detections.append({'box':[x, y, x+cw, y+ch], 'label':'car', 'score':0.7, 'method':'cv'})
|
| 101 |
+
return detections
|
| 102 |
|
| 103 |
+
# Merge detections (NMS)
|
| 104 |
+
def merge_all_detections(self, all_detections):
|
| 105 |
+
if len(all_detections)==0: return []
|
| 106 |
+
normalized = []
|
| 107 |
+
for det in all_detections:
|
| 108 |
+
x1, y1, x2, y2 = det['box']
|
| 109 |
+
normalized.append({'box':[x1,y1,x2,y2], 'score':det['score'], 'method':det.get('method','unknown')})
|
| 110 |
+
normalized.sort(key=lambda x: x['score'], reverse=True)
|
| 111 |
+
keep=[]
|
| 112 |
+
while normalized:
|
| 113 |
+
best = normalized.pop(0)
|
| 114 |
+
keep.append(best)
|
| 115 |
+
normalized = [d for d in normalized if self.calculate_iou(best['box'], d['box'])<0.5]
|
| 116 |
+
return keep
|
| 117 |
+
|
| 118 |
+
def calculate_iou(self, box1, box2):
|
| 119 |
+
x1_1, y1_1, x2_1, y2_1 = box1
|
| 120 |
+
x1_2, y1_2, x2_2, y2_2 = box2
|
| 121 |
+
x1_i, y1_i = max(x1_1,x1_2), max(y1_1,y1_2)
|
| 122 |
+
x2_i, y2_i = min(x2_1,x2_2), min(y2_1,y2_2)
|
| 123 |
+
if x2_i<x1_i or y2_i<y1_i: return 0.0
|
| 124 |
+
inter = (x2_i-x1_i)*(y2_i-y1_i)
|
| 125 |
+
area1 = (x2_1-x1_1)*(y2_1-y1_1)
|
| 126 |
+
area2 = (x2_2-x1_2)*(y2_2-y1_2)
|
| 127 |
+
union = area1+area2-inter
|
| 128 |
+
return inter/union if union>0 else 0
|
| 129 |
+
|
| 130 |
+
def create_annotated_image(self, image, detections):
|
| 131 |
+
img_array = np.array(image)
|
| 132 |
+
fig, ax = plt.subplots(1, figsize=(12,8))
|
| 133 |
+
ax.imshow(img_array)
|
| 134 |
+
for i, det in enumerate(detections, 1):
|
| 135 |
+
x1, y1, x2, y2 = det['box']
|
| 136 |
+
rect = patches.Rectangle((x1,y1,x2-x1,y2-y1), linewidth=3, edgecolor='#00ff00', facecolor='none')
|
| 137 |
+
ax.add_patch(rect)
|
| 138 |
+
ax.text(x1+(x2-x1)/2, y1+(y2-y1)/2, f"{i}",
|
| 139 |
+
bbox=dict(facecolor='#00ff00', alpha=0.9, boxstyle='circle,pad=0.3'),
|
| 140 |
+
fontsize=12, color='black', weight='bold', ha='center', va='center')
|
| 141 |
+
ax.axis('off')
|
| 142 |
+
plt.tight_layout()
|
| 143 |
+
fig.canvas.draw()
|
| 144 |
+
img_plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
| 145 |
+
img_plot = img_plot.reshape(fig.canvas.get_width_height()[::-1]+(3,))
|
| 146 |
+
plt.close(fig)
|
| 147 |
+
return Image.fromarray(img_plot)
|
| 148 |
+
|
| 149 |
+
# --- Main function for Gradio ---
|
| 150 |
+
def process_image(self, image, total_spaces):
|
| 151 |
+
if image is None: return None, "Upload an image", ""
|
| 152 |
+
self.total_spaces = total_spaces
|
| 153 |
+
if isinstance(image, np.ndarray): image = Image.fromarray(image)
|
| 154 |
+
all_dets=[]
|
| 155 |
+
all_dets.extend(self.detect_with_florence(image))
|
| 156 |
+
all_dets.extend(self.detect_with_yolo_world(image))
|
| 157 |
+
all_dets.extend(self.advanced_cv_detection(image))
|
| 158 |
+
final_dets = self.merge_all_detections(all_dets)
|
| 159 |
+
count = len(final_dets)
|
| 160 |
+
annotated_img = self.create_annotated_image(image, final_dets)
|
| 161 |
+
occupancy_rate = min((count/total_spaces)*100, 100)
|
| 162 |
+
available = max(total_spaces-count,0)
|
| 163 |
+
status = "🟢 AVAILABLE" if occupancy_rate<50 else "🟡 BUSY" if occupancy_rate<70 else "🟠 CRITICAL" if occupancy_rate<90 else "🔴 FULL"
|
| 164 |
+
pred_time = (datetime.now()+timedelta(hours=available/5)).strftime('%I:%M %p')
|
| 165 |
+
status_html = f"<h2 style='color:green'>{status}</h2>"
|
| 166 |
+
stats_text = f"Total Vehicles: {count}\nAvailable: {available}\nOccupancy: {occupancy_rate:.1f}%"
|
| 167 |
+
return annotated_img, status_html, stats_text
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
# --- Initialize Detector ---
|
| 171 |
detector = StateOfTheArtParkingDetector()
|
| 172 |
|
| 173 |
+
# --- Gradio Interface ---
|
| 174 |
+
with gr.Blocks() as demo:
|
| 175 |
+
gr.Markdown("## 🅿️ Smart Parking Management System")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
with gr.Row():
|
| 177 |
with gr.Column():
|
| 178 |
+
input_image = gr.Image(label="Parking Lot Image", type="pil")
|
| 179 |
+
total_spaces_slider = gr.Slider(10, 200, value=50, step=5, label="Total Spaces")
|
| 180 |
+
analyze_btn = gr.Button("Analyze Parking Lot")
|
| 181 |
+
with gr.Column():
|
| 182 |
+
output_image = gr.Image(label="Detected Vehicles", type="pil")
|
| 183 |
+
status_html = gr.HTML(label="Parking Status")
|
| 184 |
+
stats_output = gr.Textbox(label="Detailed Stats", lines=10)
|
| 185 |
+
analyze_btn.click(fn=detector.process_image, inputs=[input_image,total_spaces_slider], outputs=[output_image,status_html,stats_output])
|
| 186 |
|
| 187 |
demo.launch()
|