HugoHE's picture
Update app.py
e0c8439
raw
history blame
6.51 kB
from fmpy import *
from fmpy import read_model_description, extract
from fmpy.fmi2 import FMU2Slave
import numpy as np
import shutil
import pandas as pd
import random
import plotly.graph_objects as go
def add_noise(min, max, std, mean):
return np.clip(np.random.normal(mean, std), min, max)
def gen_pulsive_noise(count, min_val, max_val):
pulse = 0
n = count // 100 # Use integer division to get the floor of count / 100
start = 100 * n
end = start + 50
if (count > start and count < end and n % 15 == 0):
pulse = random.randint(min_val, max_val)
return pulse
def simulation(input_noise, output_noise, min, max, std, mean, min_pul, max_pul, kp, ki, kd, show_original):
vrs = {}
fmu = 'Pharmacokinetics_4_comportmental_model_PI_ref_FMU_base4_OAAS_lnx.fmu'
model_description = read_model_description(fmu)
for variable in model_description.modelVariables:
vrs[variable.name] = variable.valueReference
start_time = 0.0
stop_time = 7000
step_size = 1
unzipdir = extract(fmu)
fmu = FMU2Slave(guid=model_description.guid,
unzipDirectory=unzipdir,
modelIdentifier=model_description.coSimulation.modelIdentifier,
instanceName='instance1')
# initialize
fmu.instantiate()
fmu.setupExperiment(startTime=start_time)
fmu.enterInitializationMode()
fmu.exitInitializationMode()
fmu.setReal([vrs["amesim_interface.Age_year"]], [60])
fmu.setReal([vrs["amesim_interface.BIS0"]], [95.6])
fmu.setReal([vrs["amesim_interface.BISmin"]], [8.9])
fmu.setReal([vrs["amesim_interface.Drug_concentration_mgmL"]], [20])
fmu.setReal([vrs["amesim_interface.EC50"]], [2.23])
fmu.setReal([vrs["amesim_interface.Gamma"]], [1.58])
fmu.setReal([vrs["amesim_interface.Gender_0male_1female"]], [1])
fmu.setReal([vrs["amesim_interface.Height_cm"]], [168])
fmu.setReal([vrs["amesim_interface.Infusion_rate_mLh"]], [200])
fmu.setReal([vrs["amesim_interface.Weight_kg"]], [75])
vr_input = vrs["amesim_interface.Infusion_rate_mLh"]
vr_output = vrs["amesim_interface.BIS_Index"]
rows = [] # list to record the results
time = start_time
infusion_rate = 200
i = 0
target = 30
last_error = 0
# simulation loop
while time < stop_time:
if time >= 2.4e3 and time < 4.5e3:
target = 70
p = 0
i = 0
if time >= 4.5e3:
target = 30
p = 0
i = 0
bis = fmu.getReal([int(vr_output)])[0] if time > step_size else 95.6
if input_noise:
bis += add_noise(min, max, std, mean)
p = bis - target
i = i + p
d = p - last_error
last_error = p
infusion_rate = np.clip(kp*p + ki*i + kd*d, 0, 200)
if output_noise:
infusion_rate += gen_pulsive_noise(time, min_pul, max_pul)
fmu.setReal([vr_input], [int(infusion_rate)])
# perform one step
fmu.doStep(currentCommunicationPoint=time, communicationStepSize=step_size)
# advance the time
time += step_size
# get the values for 'inputs' and 'outputs[4]'
inputs, outputs = fmu.getReal([int(vr_input), int(vr_output)])
# append the results
rows.append((time, bis, inputs))
fmu.terminate()
fmu.freeInstance()
shutil.rmtree(unzipdir, ignore_errors=True)
result = np.array(rows, dtype=np.dtype([('time', np.float64), ('BIS', np.float64), ('Infusion', np.float64)]))
result_baseline = np.load("result.npy")
df = pd.DataFrame(result)
df_original = pd.DataFrame(result_baseline)
trace1 = go.Scatter(x=df.index, y=df['BIS'], mode='lines', name='BIS')
fig1 = go.Figure(data=trace1)
fig1.update_layout(height=400, width=1200, title_text="BIS evolution")
# Add a line trace for column_2 in the second subplot
trace2 = go.Scatter(x=df.index, y=df['Infusion'], mode='lines', name='Infusion')
fig2 = go.Figure(data=trace2)
fig2.update_layout(height=400, width=1200, title_text="Infusion evolution")
if show_original:
fig1.add_trace(go.Scatter(x=df_original.index, y=df_original['BIS'], mode='lines', name='BIS original', line=dict(color="red"), opacity=0.5))
fig2.add_trace(go.Scatter(x=df_original.index, y=df_original['Infusion'], mode='lines', name='Infusion original', line=dict(color="red"), opacity=0.5))
return fig1, fig2
import gradio as gr
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("**BIS noise**")
input_noise = gr.inputs.Checkbox(label="Add Gaussian noise")
with gr.Accordion("noise range"):
min_gaussian = gr.inputs.Slider(minimum=0, maximum=20, step=1, default=5, label="noise min")
max_gaussian = gr.inputs.Slider(minimum=0, maximum=20, step=1, default=10, label="noise max")
std_gaussian = gr.inputs.Slider(minimum=0, maximum=10, step=1, default=2, label="noise standard deviation")
mean_gaussian = gr.inputs.Slider(minimum=0, maximum=20, step=1, default=7, label="noise mean")
gr.Markdown("**Infusion noise**")
with gr.Blocks():
output_noise = gr.inputs.Checkbox(label="Add Pulsive noise")
with gr.Accordion("noise range"):
min_pul = gr.inputs.Slider(minimum=0, maximum=50, step=1, default=50, label="noise min")
max_pul = gr.inputs.Slider(minimum=0, maximum=150, step=1, default=150, label="noise max")
gr.Markdown("**PID controller paramters**")
with gr.Blocks():
kp_slider = gr.inputs.Slider(minimum=0, maximum=20, default=4, label="kp")
ki_slider = gr.inputs.Slider(minimum=0, maximum=1, default=0.01, label="ki")
kd_slider = gr.inputs.Slider(minimum=0, maximum=200, default=120, label="kd")
show_original = gr.inputs.Checkbox(label="Show original")
button = gr.Button("Simulate")
with gr.Column(scale=5):
plot1 = gr.Plot(label="BIS evolution")
plot2 = gr.Plot(label="Infusion evolution")
button.click(simulation, inputs=[input_noise, output_noise, min_gaussian, max_gaussian, std_gaussian, mean_gaussian, min_pul, max_pul, kp_slider, ki_slider, kd_slider, show_original], outputs=[plot1, plot2])
demo.launch()