Spaces:
Build error
Build error
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from huggingsound import SpeechRecognitionModel | |
| from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler | |
| from transformers import pipeline | |
| # Función para convertir la tasa de muestreo del audio de entrada | |
| def modelo1(audio): | |
| print(audio) | |
| whisper = pipeline('automatic-speech-recognition', model='openai/whisper-medium', device=-1) # Cambia 'device' a -1 para usar la CPU | |
| print(np.array(audio[1])) | |
| text = whisper(np.array(audio[1])) | |
| print(text["text"]) | |
| return text["text"] | |
| def modelo2(text): | |
| model_id = "stabilityai/stable-diffusion-2-1" | |
| # Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32) | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
| image = pipe(text).images[0] | |
| return image | |
| def execution(audio): | |
| modelo1res = modelo1(audio) | |
| modelo2res = modelo2(modelo1res) | |
| return modelo2res | |
| if __name__ == "__main__": | |
| demo = gr.Interface(fn=execution, inputs="audio", outputs="image") | |
| demo.launch() |