Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import tempfile
|
| 4 |
+
import pickle
|
| 5 |
+
import os
|
| 6 |
+
import cv2
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import requests
|
| 9 |
+
import re
|
| 10 |
+
from symspellpy import SymSpell, Verbosity
|
| 11 |
+
from rapidocr import RapidOCR, EngineType, LangCls, LangDet, LangRec, ModelType, OCRVersion
|
| 12 |
+
|
| 13 |
+
# Constants
|
| 14 |
+
ANCHOR_PREFIXES = ["tab", "cap", "t."]
|
| 15 |
+
|
| 16 |
+
# Medical anchors (TAB/CAP/INJ/etc.)
|
| 17 |
+
ANCHORS = [
|
| 18 |
+
r"tab\.?", r"cap\.?", r"inj\.?", r"syp\.?", r"syr\.?",
|
| 19 |
+
r"sol\.?", r"susp\.?", r"oint\.?", r"crm\.?", r"gel\.?",
|
| 20 |
+
r"drops?", r"powder", r"dragees?", r"t\.?", r"c\.?"
|
| 21 |
+
]
|
| 22 |
+
ANCHOR_PATTERN = re.compile(r"\b(" + "|".join(ANCHORS) + r")", re.IGNORECASE)
|
| 23 |
+
|
| 24 |
+
# Non-medical line patterns (to drop lines early)
|
| 25 |
+
NON_MED_PATTERNS = [
|
| 26 |
+
r"emergency", r"contact", r"please",
|
| 27 |
+
r"nephrologist", r"cardiologist",
|
| 28 |
+
r"opinion", r"inform", r"kftafter", r"prescription",
|
| 29 |
+
r"follow[- ]up", r"dr\.", r"physician", r"clinic",
|
| 30 |
+
r"hospital", r"diagnosed", r"treatment", r"patient",
|
| 31 |
+
r"age[: ]", r"sex[: ]", r"weight[: ]", r"height[: ]",
|
| 32 |
+
r"bp[: ]", r"pulse[: ]", r"temperature[: ]",
|
| 33 |
+
r"investigation", r"advised", r"admission", r"discharge",
|
| 34 |
+
r"report", r"lab[: ]", r"laboratory", r"radiology",
|
| 35 |
+
r"address", r"phone[: ]", r"mobile[: ]", r"email[: ]",
|
| 36 |
+
r"signature", r"regd\.?", r"drugs? prescribed"
|
| 37 |
+
]
|
| 38 |
+
NON_MED_REGEX = re.compile("|".join(NON_MED_PATTERNS), re.IGNORECASE)
|
| 39 |
+
|
| 40 |
+
# Rescue list for drug-like English words
|
| 41 |
+
rescue_list = {"d3", "b12", "k2", "iron", "zinc", "calcium", "vit", "xl"}
|
| 42 |
+
|
| 43 |
+
def is_potential_med_line(text: str) -> bool:
|
| 44 |
+
t = text.lower()
|
| 45 |
+
non_med_match = NON_MED_REGEX.search(t)
|
| 46 |
+
if non_med_match:
|
| 47 |
+
return False
|
| 48 |
+
anchor_match = ANCHOR_PATTERN.search(t)
|
| 49 |
+
if not anchor_match:
|
| 50 |
+
return False
|
| 51 |
+
digit_match = re.search(r"\d", t)
|
| 52 |
+
if not digit_match:
|
| 53 |
+
return False
|
| 54 |
+
return True
|
| 55 |
+
|
| 56 |
+
def validate_drug_match(term: str, drug_db, drug_token_index):
|
| 57 |
+
"""
|
| 58 |
+
Map SymSpell term -> canonical database drug, or None if noise.
|
| 59 |
+
"""
|
| 60 |
+
if term in drug_db:
|
| 61 |
+
return term
|
| 62 |
+
if term in drug_token_index:
|
| 63 |
+
# pick one canonical name; you can change selection logic if needed
|
| 64 |
+
return sorted(drug_token_index[term])[0]
|
| 65 |
+
return None
|
| 66 |
+
|
| 67 |
+
def normalize_anchored_tokens(raw_text: str):
|
| 68 |
+
"""
|
| 69 |
+
Use TAB/CAP/T. as anchors, not something to delete:
|
| 70 |
+
- 'TABCLOPITAB75MG TAB' -> ['clopitab']
|
| 71 |
+
- 'TAB SOBISISTAB' -> ['sobisistab']
|
| 72 |
+
- 'TABSTARPRESSXL25MGTAB' -> ['starpressxl']
|
| 73 |
+
"""
|
| 74 |
+
t = raw_text.lower()
|
| 75 |
+
# Remove dosage and numbers but keep anchor letters
|
| 76 |
+
t = re.sub(r"\d+\s*(mg|ml|gm|%|u|mcg)", " ", t)
|
| 77 |
+
t = re.sub(r"\d+", " ", t)
|
| 78 |
+
tokens = t.split()
|
| 79 |
+
|
| 80 |
+
normalized = []
|
| 81 |
+
skip_next = False
|
| 82 |
+
|
| 83 |
+
for i, tok in enumerate(tokens):
|
| 84 |
+
if skip_next:
|
| 85 |
+
skip_next = False
|
| 86 |
+
continue
|
| 87 |
+
|
| 88 |
+
base = tok
|
| 89 |
+
|
| 90 |
+
# Case 1: token starts with anchor as prefix (no space)
|
| 91 |
+
for pref in ANCHOR_PREFIXES:
|
| 92 |
+
if base.startswith(pref) and len(base) > len(pref):
|
| 93 |
+
base = base[len(pref):]
|
| 94 |
+
break
|
| 95 |
+
|
| 96 |
+
# Case 2: token is pure anchor and should attach to next token
|
| 97 |
+
if base in ["tab", "cap", "t"]:
|
| 98 |
+
if i + 1 < len(tokens):
|
| 99 |
+
merged = tokens[i + 1]
|
| 100 |
+
for pref in ANCHOR_PREFIXES:
|
| 101 |
+
if merged.startswith(pref) and len(merged) > len(pref):
|
| 102 |
+
merged = merged[len(pref):]
|
| 103 |
+
break
|
| 104 |
+
base = merged
|
| 105 |
+
skip_next = True
|
| 106 |
+
else:
|
| 107 |
+
continue
|
| 108 |
+
|
| 109 |
+
base = base.strip()
|
| 110 |
+
if len(base) >= 3:
|
| 111 |
+
normalized.append(base)
|
| 112 |
+
|
| 113 |
+
return normalized
|
| 114 |
+
|
| 115 |
+
def initialize_database():
|
| 116 |
+
data_path = os.path.join(os.path.dirname(__file__), "data/Dataset.csv")
|
| 117 |
+
df = pd.read_csv(data_path)
|
| 118 |
+
drug_db = set(df["Combined_Drugs"].astype(str).str.lower().str.strip())
|
| 119 |
+
sym_spell = SymSpell(max_dictionary_edit_distance=2, prefix_length=7)
|
| 120 |
+
|
| 121 |
+
for drug in drug_db:
|
| 122 |
+
d = drug.lower()
|
| 123 |
+
sym_spell.create_dictionary_entry(d, 100000)
|
| 124 |
+
parts = d.split()
|
| 125 |
+
if len(parts) > 1:
|
| 126 |
+
for p in parts:
|
| 127 |
+
if len(p) > 3:
|
| 128 |
+
sym_spell.create_dictionary_entry(p, 100000)
|
| 129 |
+
|
| 130 |
+
drug_token_index = {}
|
| 131 |
+
for full in drug_db:
|
| 132 |
+
toks = full.split()
|
| 133 |
+
for tok in toks:
|
| 134 |
+
if len(tok) < 3:
|
| 135 |
+
continue
|
| 136 |
+
drug_token_index.setdefault(tok, set()).add(full)
|
| 137 |
+
|
| 138 |
+
# English filter
|
| 139 |
+
try:
|
| 140 |
+
url = (
|
| 141 |
+
"https://raw.githubusercontent.com/first20hours/"
|
| 142 |
+
"google-10000-english/master/google-10000-english-no-swears.txt"
|
| 143 |
+
)
|
| 144 |
+
response = requests.get(url, timeout=10)
|
| 145 |
+
english_vocab = set(response.text.split())
|
| 146 |
+
except Exception:
|
| 147 |
+
english_vocab = {"the", "and", "tab", "cap", "mg", "ml"}
|
| 148 |
+
|
| 149 |
+
return {
|
| 150 |
+
'drug_db': drug_db,
|
| 151 |
+
'sym_spell': sym_spell,
|
| 152 |
+
'drug_token_index': drug_token_index,
|
| 153 |
+
'english_vocab': english_vocab,
|
| 154 |
+
'rescue_list': rescue_list,
|
| 155 |
+
'NON_MED_REGEX': NON_MED_REGEX,
|
| 156 |
+
'ANCHOR_PATTERN': ANCHOR_PATTERN,
|
| 157 |
+
'ANCHOR_PREFIXES': ANCHOR_PREFIXES
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
def process_image_ocr(image_path):
|
| 161 |
+
# Load cached database
|
| 162 |
+
cache_path = os.path.join(os.path.dirname(__file__), "cache/database_cache.pkl")
|
| 163 |
+
try:
|
| 164 |
+
with open(cache_path, 'rb') as f:
|
| 165 |
+
cache = pickle.load(f)
|
| 166 |
+
drug_db = cache['drug_db']
|
| 167 |
+
sym_spell = cache['sym_spell']
|
| 168 |
+
drug_token_index = cache['drug_token_index']
|
| 169 |
+
english_vocab = cache['english_vocab']
|
| 170 |
+
rescue_list = cache['rescue_list']
|
| 171 |
+
except FileNotFoundError:
|
| 172 |
+
print("Error: database_cache.pkl not found. Initializing database...")
|
| 173 |
+
cache = initialize_database()
|
| 174 |
+
drug_db = cache['drug_db']
|
| 175 |
+
sym_spell = cache['sym_spell']
|
| 176 |
+
drug_token_index = cache['drug_token_index']
|
| 177 |
+
english_vocab = cache['english_vocab']
|
| 178 |
+
rescue_list = cache['rescue_list']
|
| 179 |
+
|
| 180 |
+
# Load image using cv2
|
| 181 |
+
img = cv2.imread(image_path)
|
| 182 |
+
if img is None:
|
| 183 |
+
raise ValueError(f"Could not load image from {image_path}")
|
| 184 |
+
|
| 185 |
+
# Create RapidOCR engine with default parameters
|
| 186 |
+
ocr_engine = RapidOCR(
|
| 187 |
+
params={
|
| 188 |
+
"Global.max_side_len": 2000,
|
| 189 |
+
"Det.engine_type": EngineType.ONNXRUNTIME,
|
| 190 |
+
"Det.lang_type": LangDet.CH,
|
| 191 |
+
"Det.model_type": ModelType.MOBILE,
|
| 192 |
+
"Det.ocr_version": OCRVersion.PPOCRV4,
|
| 193 |
+
"Cls.engine_type": EngineType.ONNXRUNTIME,
|
| 194 |
+
"Cls.lang_type": LangCls.CH,
|
| 195 |
+
"Cls.model_type": ModelType.MOBILE,
|
| 196 |
+
"Cls.ocr_version": OCRVersion.PPOCRV4,
|
| 197 |
+
"Rec.engine_type": EngineType.ONNXRUNTIME,
|
| 198 |
+
"Rec.lang_type": LangRec.CH,
|
| 199 |
+
"Rec.model_type": ModelType.MOBILE,
|
| 200 |
+
"Rec.ocr_version": OCRVersion.PPOCRV4,
|
| 201 |
+
}
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
# Run OCR
|
| 205 |
+
ocr_result = ocr_engine(
|
| 206 |
+
img,
|
| 207 |
+
use_det=True,
|
| 208 |
+
use_cls=True,
|
| 209 |
+
use_rec=True,
|
| 210 |
+
text_score=0.5,
|
| 211 |
+
box_thresh=0.5,
|
| 212 |
+
unclip_ratio=1.6,
|
| 213 |
+
return_word_box=False,
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
ocr_data = ocr_result.txts
|
| 217 |
+
|
| 218 |
+
found_meds_with_originals = {}
|
| 219 |
+
|
| 220 |
+
for item in ocr_data:
|
| 221 |
+
text_lower = item.lower()
|
| 222 |
+
|
| 223 |
+
# Strong line-level gate
|
| 224 |
+
if not is_potential_med_line(text_lower):
|
| 225 |
+
continue
|
| 226 |
+
|
| 227 |
+
# Skip doctor name lines
|
| 228 |
+
if "dr." in text_lower or "dr " in text_lower:
|
| 229 |
+
continue
|
| 230 |
+
|
| 231 |
+
# Anchor-aware tokens
|
| 232 |
+
candidate_tokens = normalize_anchored_tokens(item)
|
| 233 |
+
|
| 234 |
+
# Optional SymSpell segmentation on normalized tokens
|
| 235 |
+
if candidate_tokens:
|
| 236 |
+
segmentation = sym_spell.word_segmentation(" ".join(candidate_tokens))
|
| 237 |
+
corrected_string = segmentation.corrected_string
|
| 238 |
+
candidate_tokens = corrected_string.split()
|
| 239 |
+
|
| 240 |
+
for word in candidate_tokens:
|
| 241 |
+
if len(word) < 3:
|
| 242 |
+
continue
|
| 243 |
+
|
| 244 |
+
if word in english_vocab and word not in rescue_list:
|
| 245 |
+
continue
|
| 246 |
+
|
| 247 |
+
# Check for exact match first to avoid false positives from SymSpell corrections
|
| 248 |
+
canonical = validate_drug_match(word, drug_db, drug_token_index)
|
| 249 |
+
if canonical:
|
| 250 |
+
if canonical not in found_meds_with_originals:
|
| 251 |
+
found_meds_with_originals[canonical] = []
|
| 252 |
+
if item not in found_meds_with_originals[canonical]:
|
| 253 |
+
found_meds_with_originals[canonical].append(item)
|
| 254 |
+
continue # Skip SymSpell since exact match found
|
| 255 |
+
|
| 256 |
+
suggestions = sym_spell.lookup(
|
| 257 |
+
word, Verbosity.CLOSEST, max_edit_distance=1
|
| 258 |
+
)
|
| 259 |
+
if not suggestions:
|
| 260 |
+
continue
|
| 261 |
+
|
| 262 |
+
cand = suggestions[0].term
|
| 263 |
+
canonical = validate_drug_match(cand, drug_db, drug_token_index)
|
| 264 |
+
if not canonical:
|
| 265 |
+
continue # reject noise that is not truly in drug_db
|
| 266 |
+
|
| 267 |
+
if canonical not in found_meds_with_originals:
|
| 268 |
+
found_meds_with_originals[canonical] = []
|
| 269 |
+
if item not in found_meds_with_originals[canonical]:
|
| 270 |
+
found_meds_with_originals[canonical].append(item)
|
| 271 |
+
|
| 272 |
+
print("\nJSON Output:")
|
| 273 |
+
print(json.dumps(found_meds_with_originals, indent=4))
|
| 274 |
+
|
| 275 |
+
return found_meds_with_originals
|
| 276 |
+
|
| 277 |
+
def process_prescription(image):
|
| 278 |
+
if image is None:
|
| 279 |
+
return "No image uploaded."
|
| 280 |
+
# Save PIL image to temp file
|
| 281 |
+
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmp:
|
| 282 |
+
image.save(tmp.name)
|
| 283 |
+
result = process_image_ocr(tmp.name)
|
| 284 |
+
return json.dumps(result, indent=4)
|
| 285 |
+
|
| 286 |
+
iface = gr.Interface(
|
| 287 |
+
fn=process_prescription,
|
| 288 |
+
inputs=gr.Image(type="pil", label="Upload Prescription Image"),
|
| 289 |
+
outputs=gr.Textbox(label="Extracted Drugs", lines=20),
|
| 290 |
+
title="MediBot - Drug Extraction from Prescriptions",
|
| 291 |
+
description="Upload a prescription image to extract drug information."
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
if __name__ == "__main__":
|
| 295 |
+
iface.launch()
|