Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from tensorflow.keras.preprocessing import image
|
| 5 |
+
from huggingface_hub import InferenceClient
|
| 6 |
+
|
| 7 |
+
# Load the trained disease detection model
|
| 8 |
+
model = tf.keras.models.load_model("Tomato_Leaf_Disease_Model.h5")
|
| 9 |
+
|
| 10 |
+
# Disease categories
|
| 11 |
+
class_labels = [
|
| 12 |
+
"Tomato Bacterial Spot",
|
| 13 |
+
"Tomato Early Blight",
|
| 14 |
+
"Tomato Late Blight",
|
| 15 |
+
"Tomato Mosaic Virus",
|
| 16 |
+
"Tomato Yellow Leaf Curl Virus"
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
# AI Assistant (Zephyr-7B)
|
| 20 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 21 |
+
|
| 22 |
+
# Image preprocessing
|
| 23 |
+
def preprocess(img):
|
| 24 |
+
img = img.resize((224, 224)) # Resize for the model
|
| 25 |
+
img = image.img_to_array(img) / 255.0 # Normalize
|
| 26 |
+
img = np.expand_dims(img, axis=0) # Add batch dimension
|
| 27 |
+
return img
|
| 28 |
+
|
| 29 |
+
# Disease detection function
|
| 30 |
+
def detect_disease(img):
|
| 31 |
+
img = preprocess(img)
|
| 32 |
+
prediction = model.predict(img)
|
| 33 |
+
class_idx = np.argmax(prediction) # Class with highest probability
|
| 34 |
+
confidence = np.max(prediction) * 100 # Confidence score
|
| 35 |
+
disease_name = class_labels[class_idx]
|
| 36 |
+
return f"{disease_name} (Confidence: {confidence:.2f}%)", disease_name
|
| 37 |
+
|
| 38 |
+
# AI Assistant function
|
| 39 |
+
def get_disease_advice(disease_name):
|
| 40 |
+
prompt = f"A farmer detected {disease_name} on their tomato plant. How should they manage it?"
|
| 41 |
+
|
| 42 |
+
messages = [{"role": "system", "content": "You are an expert agricultural advisor."}]
|
| 43 |
+
messages.append({"role": "user", "content": prompt})
|
| 44 |
+
|
| 45 |
+
response = ""
|
| 46 |
+
for message in client.chat_completion(messages, max_tokens=512, stream=True, temperature=0.7, top_p=0.95):
|
| 47 |
+
token = message.choices[0].delta.content
|
| 48 |
+
response += token
|
| 49 |
+
|
| 50 |
+
return response
|
| 51 |
+
|
| 52 |
+
# Combined function
|
| 53 |
+
def diagnose_and_advise(image):
|
| 54 |
+
detected_disease, disease_name = detect_disease(image)
|
| 55 |
+
|
| 56 |
+
if "Healthy" in detected_disease:
|
| 57 |
+
return detected_disease, "Your tomato plant looks healthy! 😊"
|
| 58 |
+
|
| 59 |
+
advice = get_disease_advice(disease_name)
|
| 60 |
+
return detected_disease, advice
|
| 61 |
+
|
| 62 |
+
# AI Chatbot for General Questions
|
| 63 |
+
def chatbot_response(user_message, history, system_message, max_tokens, temperature, top_p):
|
| 64 |
+
messages = [{"role": "system", "content": system_message}]
|
| 65 |
+
|
| 66 |
+
for val in history:
|
| 67 |
+
if val[0]:
|
| 68 |
+
messages.append({"role": "user", "content": val[0]})
|
| 69 |
+
if val[1]:
|
| 70 |
+
messages.append({"role": "assistant", "content": val[1]})
|
| 71 |
+
|
| 72 |
+
messages.append({"role": "user", "content": user_message})
|
| 73 |
+
|
| 74 |
+
response = ""
|
| 75 |
+
for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
|
| 76 |
+
token = message.choices[0].delta.content
|
| 77 |
+
response += token
|
| 78 |
+
|
| 79 |
+
return response
|
| 80 |
+
|
| 81 |
+
# Gradio UI
|
| 82 |
+
with gr.Blocks() as demo:
|
| 83 |
+
gr.Markdown("# 🍅 Tomato Sentry: Disease Detection & AI Assistant")
|
| 84 |
+
|
| 85 |
+
with gr.Row():
|
| 86 |
+
with gr.Column():
|
| 87 |
+
gr.Markdown("### 📸 Disease Detection")
|
| 88 |
+
image_input = gr.Image(type="pil", label="Upload a Tomato Leaf Image")
|
| 89 |
+
detect_button = gr.Button("Detect Disease")
|
| 90 |
+
disease_output = gr.Textbox(label="Detected Disease & Confidence")
|
| 91 |
+
advice_output = gr.Textbox(label="AI Farming Advice")
|
| 92 |
+
|
| 93 |
+
with gr.Column():
|
| 94 |
+
gr.Markdown("### 🤖 AI Chatbot for Farmers")
|
| 95 |
+
user_input = gr.Textbox(label="Ask a farming question")
|
| 96 |
+
chat_button = gr.Button("Get Advice")
|
| 97 |
+
chat_output = gr.Textbox(label="AI Response")
|
| 98 |
+
|
| 99 |
+
detect_button.click(diagnose_and_advise, inputs=image_input, outputs=[disease_output, advice_output])
|
| 100 |
+
chat_button.click(chatbot_response, inputs=[user_input, [], "You are a farming expert.", 512, 0.7, 0.95], outputs=chat_output)
|
| 101 |
+
|
| 102 |
+
demo.launch()
|