Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,8 @@ from tensorflow.keras.models import load_model
|
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
# ===== Hugging Face API Token =====
|
| 9 |
-
HF_API_TOKEN
|
|
|
|
| 10 |
|
| 11 |
# ===== Load Trained Models =====
|
| 12 |
model_a = load_model("Tomato_Leaf_Disease_Model.h5")
|
|
@@ -24,27 +25,39 @@ def preprocess_image(image, target_size=(224, 224)):
|
|
| 24 |
img_array = np.expand_dims(img_array, axis=0)
|
| 25 |
return img_array
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# ===== Prediction Functions =====
|
| 28 |
def predict_model_a(image):
|
| 29 |
img = preprocess_image(image)
|
| 30 |
pred = model_a.predict(img)
|
| 31 |
-
|
| 32 |
-
return
|
| 33 |
|
| 34 |
def predict_model_b(image):
|
| 35 |
img = preprocess_image(image)
|
| 36 |
pred = model_b.predict(img)
|
| 37 |
-
|
|
|
|
| 38 |
|
| 39 |
def predict_classifier(image):
|
| 40 |
img = preprocess_image(image)
|
| 41 |
pred = classifier_model.predict(img)
|
| 42 |
-
#
|
| 43 |
return "Tomato Leaf" if np.argmax(pred) == 1 else "Not Tomato Leaf"
|
| 44 |
|
| 45 |
# ===== Hugging Face Inference API Calls =====
|
| 46 |
def call_llama2(prompt):
|
| 47 |
-
"""Call
|
| 48 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
| 49 |
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 100}}
|
| 50 |
url = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
|
|
@@ -75,23 +88,31 @@ def call_openassistant(prompt):
|
|
| 75 |
|
| 76 |
# ===== AI Assistant Functions =====
|
| 77 |
def ai_assistant_v1(image, prediction):
|
| 78 |
-
# Use Llama 2-7B Chat (Model A
|
| 79 |
if "No disease" in prediction:
|
| 80 |
-
prompt = (
|
| 81 |
-
|
|
|
|
|
|
|
| 82 |
else:
|
| 83 |
-
prompt = (
|
| 84 |
-
|
|
|
|
|
|
|
| 85 |
return call_llama2(prompt)
|
| 86 |
|
| 87 |
def ai_assistant_v2(image, prediction):
|
| 88 |
-
# Use OpenAssistant (Model B
|
| 89 |
if "No disease" in prediction:
|
| 90 |
-
prompt = (
|
| 91 |
-
|
|
|
|
|
|
|
| 92 |
else:
|
| 93 |
-
prompt = (
|
| 94 |
-
|
|
|
|
|
|
|
| 95 |
return call_openassistant(prompt)
|
| 96 |
|
| 97 |
# ===== Process Function Based on Version =====
|
|
@@ -115,8 +136,10 @@ def process_version(image, version):
|
|
| 115 |
return "Classifier: The image is not a tomato leaf. Please try again."
|
| 116 |
result = predict_model_a(image)
|
| 117 |
advice = ai_assistant_v1(image, result)
|
| 118 |
-
return (
|
| 119 |
-
|
|
|
|
|
|
|
| 120 |
|
| 121 |
# --- Version 2.x (Model B) ---
|
| 122 |
elif version == "2.1":
|
|
@@ -134,8 +157,10 @@ def process_version(image, version):
|
|
| 134 |
return "Classifier: The image is not a tomato leaf. Please try again."
|
| 135 |
result = predict_model_b(image)
|
| 136 |
advice = ai_assistant_v2(image, result)
|
| 137 |
-
return (
|
| 138 |
-
|
|
|
|
|
|
|
| 139 |
|
| 140 |
else:
|
| 141 |
return "Invalid version selected."
|
|
@@ -149,13 +174,15 @@ light_css = """
|
|
| 149 |
<style>
|
| 150 |
body { background-color: white; color: black; }
|
| 151 |
.gr-button { background-color: #4CAF50; color: white; }
|
|
|
|
| 152 |
</style>
|
| 153 |
"""
|
| 154 |
|
| 155 |
dark_css = """
|
| 156 |
<style>
|
| 157 |
-
body { background-color: #
|
| 158 |
-
.gr-button { background-color: #555; color: white; }
|
|
|
|
| 159 |
</style>
|
| 160 |
"""
|
| 161 |
|
|
@@ -201,14 +228,8 @@ with gr.Blocks() as demo:
|
|
| 201 |
)
|
| 202 |
# ----- Right Column (β70%) -----
|
| 203 |
with gr.Column(scale=2):
|
| 204 |
-
image_input = gr.Image(
|
| 205 |
-
|
| 206 |
-
type="pil"
|
| 207 |
-
)
|
| 208 |
-
camera_input = gr.Image(
|
| 209 |
-
label="πΈ Use Camera (Live Preview)",
|
| 210 |
-
type="pil"
|
| 211 |
-
)
|
| 212 |
submit = gr.Button("π Analyze")
|
| 213 |
|
| 214 |
output = gr.Textbox(label="π Diagnosis & Advice", lines=8)
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
# ===== Hugging Face API Token =====
|
| 9 |
+
# Set HF_API_TOKEN in your environment. For local testing, you can create a .env file.
|
| 10 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN") # e.g., "hf_xxx..."
|
| 11 |
|
| 12 |
# ===== Load Trained Models =====
|
| 13 |
model_a = load_model("Tomato_Leaf_Disease_Model.h5")
|
|
|
|
| 25 |
img_array = np.expand_dims(img_array, axis=0)
|
| 26 |
return img_array
|
| 27 |
|
| 28 |
+
# ===== Disease Label Mappings =====
|
| 29 |
+
# Update these labels to match your model training.
|
| 30 |
+
disease_labels = {
|
| 31 |
+
0: "No disease",
|
| 32 |
+
1: "Early Blight",
|
| 33 |
+
2: "Late Blight",
|
| 34 |
+
3: "Septoria Leaf Spot",
|
| 35 |
+
4: "Bacterial Spot",
|
| 36 |
+
5: "Mosaic Virus"
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
# ===== Prediction Functions =====
|
| 40 |
def predict_model_a(image):
|
| 41 |
img = preprocess_image(image)
|
| 42 |
pred = model_a.predict(img)
|
| 43 |
+
predicted_class = np.argmax(pred)
|
| 44 |
+
return disease_labels.get(predicted_class, "Unknown result")
|
| 45 |
|
| 46 |
def predict_model_b(image):
|
| 47 |
img = preprocess_image(image)
|
| 48 |
pred = model_b.predict(img)
|
| 49 |
+
predicted_class = np.argmax(pred)
|
| 50 |
+
return disease_labels.get(predicted_class, "Unknown result")
|
| 51 |
|
| 52 |
def predict_classifier(image):
|
| 53 |
img = preprocess_image(image)
|
| 54 |
pred = classifier_model.predict(img)
|
| 55 |
+
# Here we assume the classifier returns class 1 for "Tomato Leaf"
|
| 56 |
return "Tomato Leaf" if np.argmax(pred) == 1 else "Not Tomato Leaf"
|
| 57 |
|
| 58 |
# ===== Hugging Face Inference API Calls =====
|
| 59 |
def call_llama2(prompt):
|
| 60 |
+
"""Call Llama 2-7B Chat model on Hugging Face for conversational advice."""
|
| 61 |
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
| 62 |
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 100}}
|
| 63 |
url = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
|
|
|
|
| 88 |
|
| 89 |
# ===== AI Assistant Functions =====
|
| 90 |
def ai_assistant_v1(image, prediction):
|
| 91 |
+
# Use Llama 2-7B Chat (Model A versions)
|
| 92 |
if "No disease" in prediction:
|
| 93 |
+
prompt = (
|
| 94 |
+
"You are an agricultural advisor. The tomato crop appears healthy. "
|
| 95 |
+
"Provide additional preventive tips and best practices for maintaining crop health."
|
| 96 |
+
)
|
| 97 |
else:
|
| 98 |
+
prompt = (
|
| 99 |
+
f"You are an agricultural advisor. A disease has been detected: {prediction}. "
|
| 100 |
+
"Provide detailed advice on how to manage and curb this disease, explaining it in simple terms."
|
| 101 |
+
)
|
| 102 |
return call_llama2(prompt)
|
| 103 |
|
| 104 |
def ai_assistant_v2(image, prediction):
|
| 105 |
+
# Use OpenAssistant (Model B versions)
|
| 106 |
if "No disease" in prediction:
|
| 107 |
+
prompt = (
|
| 108 |
+
"You are an agricultural advisor. The tomato crop appears healthy. "
|
| 109 |
+
"Offer additional preventive tips and guidelines for maintaining a healthy crop."
|
| 110 |
+
)
|
| 111 |
else:
|
| 112 |
+
prompt = (
|
| 113 |
+
f"You are an agricultural advisor. A disease has been detected: {prediction}. "
|
| 114 |
+
"Provide actionable steps and detailed advice on how to control and manage this disease in tomato crops."
|
| 115 |
+
)
|
| 116 |
return call_openassistant(prompt)
|
| 117 |
|
| 118 |
# ===== Process Function Based on Version =====
|
|
|
|
| 136 |
return "Classifier: The image is not a tomato leaf. Please try again."
|
| 137 |
result = predict_model_a(image)
|
| 138 |
advice = ai_assistant_v1(image, result)
|
| 139 |
+
return (
|
| 140 |
+
f"Classifier: {cls_result}\nModel A Prediction: {result}\nAdvice: {advice}\n\n"
|
| 141 |
+
f"[View Model A & Classifier Training Notebook](https://huggingface.co/your-model-a-classifier-notebook)"
|
| 142 |
+
)
|
| 143 |
|
| 144 |
# --- Version 2.x (Model B) ---
|
| 145 |
elif version == "2.1":
|
|
|
|
| 157 |
return "Classifier: The image is not a tomato leaf. Please try again."
|
| 158 |
result = predict_model_b(image)
|
| 159 |
advice = ai_assistant_v2(image, result)
|
| 160 |
+
return (
|
| 161 |
+
f"Classifier: {cls_result}\nModel B Prediction: {result}\nAdvice: {advice}\n\n"
|
| 162 |
+
f"[View Model B & Classifier Training Notebook](https://huggingface.co/your-model-b-classifier-notebook)"
|
| 163 |
+
)
|
| 164 |
|
| 165 |
else:
|
| 166 |
return "Invalid version selected."
|
|
|
|
| 174 |
<style>
|
| 175 |
body { background-color: white; color: black; }
|
| 176 |
.gr-button { background-color: #4CAF50; color: white; }
|
| 177 |
+
.gr-input, .gr-textbox, .gr-dropdown, .gr-radio, .gr-markdown, .gr-container { background-color: white; color: black; }
|
| 178 |
</style>
|
| 179 |
"""
|
| 180 |
|
| 181 |
dark_css = """
|
| 182 |
<style>
|
| 183 |
+
body { background-color: #121212 !important; color: #e0e0e0 !important; }
|
| 184 |
+
.gr-button { background-color: #555 !important; color: white !important; }
|
| 185 |
+
.gr-input, .gr-textbox, .gr-dropdown, .gr-radio, .gr-markdown, .gr-container { background-color: #333 !important; color: #e0e0e0 !important; }
|
| 186 |
</style>
|
| 187 |
"""
|
| 188 |
|
|
|
|
| 228 |
)
|
| 229 |
# ----- Right Column (β70%) -----
|
| 230 |
with gr.Column(scale=2):
|
| 231 |
+
image_input = gr.Image(label="π Upload Tomato Leaf Image", type="pil")
|
| 232 |
+
camera_input = gr.Image(label="πΈ Use Camera (Live Preview)", type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
submit = gr.Button("π Analyze")
|
| 234 |
|
| 235 |
output = gr.Textbox(label="π Diagnosis & Advice", lines=8)
|