Spaces:
Runtime error
Runtime error
Juan Bula
commited on
Commit
路
2822051
1
Parent(s):
c8a8aa7
app, requirements and utils
Browse files- app.py +59 -0
- requirements.txt +5 -0
- utils.py +18 -0
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
from utils import carga_modelo, genera
|
| 4 |
+
|
| 5 |
+
## P谩gina principal
|
| 6 |
+
st.title("Butterfly GAN (GAN de mariposas)")
|
| 7 |
+
st.write(
|
| 8 |
+
"Modelo Light-GAN entrenado con 1000 im谩genes de mariposas tomadas de la colecci贸n del Museo Smithsonian."
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
## Barra lateral
|
| 12 |
+
st.sidebar.subheader("隆Esta mariposa no existe! Ni en Am茅rica Latina 馃く.")
|
| 13 |
+
st.sidebar.image("assets/logo.png", width=200)
|
| 14 |
+
st.sidebar.caption(
|
| 15 |
+
f"[Modelo](https://huggingface.co/ceyda/butterfly_cropped_uniq1K_512) y [Dataset](https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset) usados."
|
| 16 |
+
)
|
| 17 |
+
st.sidebar.caption(f"*Disclaimers:*")
|
| 18 |
+
st.sidebar.caption(
|
| 19 |
+
"* Este demo es una versi贸n simplificada del creado por [Ceyda Cinarel](https://github.com/cceyda) y [Jonathan Whitaker](https://datasciencecastnet.home.blog/) ([link](https://huggingface.co/spaces/huggan/butterfly-gan)) durante el hackathon [HugGan](https://github.com/huggingface/community-events). Cualquier error se atribuye a [Omar Espejel](https://twitter.com/espejelomar)."
|
| 20 |
+
)
|
| 21 |
+
st.sidebar.caption(
|
| 22 |
+
"* Modelo basado en el [paper](https://openreview.net/forum?id=1Fqg133qRaI) *Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis*."
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
## Cargamos modelo
|
| 26 |
+
repo_id = "ceyda/butterfly_cropped_uniq1K_512"
|
| 27 |
+
version_modelo = "57d36a15546909557d9f967f47713236c8288838"
|
| 28 |
+
modelo_gan = carga_modelo(repo_id, version_modelo)
|
| 29 |
+
|
| 30 |
+
## Generamos 4 mariposas
|
| 31 |
+
n_mariposas = 4
|
| 32 |
+
|
| 33 |
+
## Funci贸n que genera mariposas y lo guarda como un estado de la sesi贸n
|
| 34 |
+
def corre():
|
| 35 |
+
with st.spinner("Generando, espera un poco..."):
|
| 36 |
+
ims = genera(modelo_gan, n_mariposas)
|
| 37 |
+
st.session_state["ims"] = ims
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
## Si no hay una imagen generada entonces generala
|
| 41 |
+
if "ims" not in st.session_state:
|
| 42 |
+
st.session_state["ims"] = None
|
| 43 |
+
corre()
|
| 44 |
+
|
| 45 |
+
## ims contiene las im谩genes generadas
|
| 46 |
+
ims = st.session_state["ims"]
|
| 47 |
+
|
| 48 |
+
## Si la usuaria da click en el bot贸n entonces corremos la funci贸n genera()
|
| 49 |
+
corre_boton = st.button(
|
| 50 |
+
"Generar mariposas!.",
|
| 51 |
+
on_click=corre,
|
| 52 |
+
help="Estamos en pleno vuelo, puede tardar.",
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
if ims is not None:
|
| 56 |
+
cols = st.columns(n_mariposas)
|
| 57 |
+
for j, im in enumerate(ims):
|
| 58 |
+
i = j % n_mariposas
|
| 59 |
+
cols[i].image(im, use_column_width=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/community-events.git@3fea10c5d5a50c69f509e34cd580fe9139905d04#egg=huggan
|
| 2 |
+
transformers
|
| 3 |
+
faiss-cpu
|
| 4 |
+
paddlehub
|
| 5 |
+
paddlepaddle
|
utils.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
## Cargamos el modelo desde el Hub de Hugging Face
|
| 7 |
+
def carga_modelo(model_name="ceyda/butterfly_cropped_uniq1K_512", model_version=None):
|
| 8 |
+
gan = LightweightGAN.from_pretrained(model_name, version=model_version)
|
| 9 |
+
gan.eval()
|
| 10 |
+
return gan
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
## Usamos el modelo GAN para generar im谩genes
|
| 14 |
+
def genera(gan, batch_size=1):
|
| 15 |
+
with torch.no_grad():
|
| 16 |
+
ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255
|
| 17 |
+
ims = ims.permute(0, 2, 3, 1).detach().cpu().numpy().astype(np.uint8)
|
| 18 |
+
return ims
|