Spaces:
Runtime error
Runtime error
File size: 8,809 Bytes
245b419 abf2c54 245b419 211381b 675e617 e55139b b789f18 245b419 e55139b a777612 276eaa0 3f79560 ba0eb4e abf2c54 9eab31c 535cde8 9eab31c 245b419 90a52dd 4b312a1 90a52dd b353a09 4f2c688 b353a09 245b419 b353a09 3be190c b353a09 b0d2bd5 b353a09 b0d2bd5 b353a09 245b419 b353a09 abf2c54 018a88f abf2c54 90a52dd 245b419 abf2c54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import gradio as gr
from PIL import Image
from huggingface_hub import InferenceClient
import os
os.system("git clone https://github.com/tencent-ailab/IP-Adapter.git")
os.system("cp -r IP-Adapter/ip_adapter ip_adapter")
os.system("ls ip_adapter")
from generate_consistent import IPAdapterRunner
from flux_client_wrapper import FluxImageGenerator
os.system("tree -d")
HF_TOKEN=os.getenv('HF_TOKEN')
flux_generator = FluxImageGenerator()
ipadapter_runner = IPAdapterRunner()
current_avatar = None # simple global to hold latest avatar image
def generate_initial_avatar():
global current_avatar
# Assume `flux_generator.generate_avatar()` returns a PIL image
current_avatar = flux_generator.generate_avatar(prompt="default cyberpunk portrait")
return current_avatar
def generate_variant(prompt):
global current_avatar
if current_avatar is None:
return None # or placeholder image
# Assume `ipadapter_runner.generate_variant()` returns a PIL image
return ipadapter_runner.generate_variant(base_image=current_avatar, prompt=prompt)
client = InferenceClient(
"meta-llama/Llama-3.2-3B-Instruct" #"HuggingFaceH4/zephyr-7b-beta"
)
# Background effect from CodePen
background_html = """
<p class="codepen" data-height="300" data-theme-id="dark" data-default-tab="html,result" data-slug-hash="LYwLqVv" data-pen-title="WebGL Eye Pattern" data-user="bxck75" style="height: 300px; box-sizing: border-box; display: flex; align-items: center; justify-content: center; border: 2px solid; margin: 1em 0; padding: 1em;">
<span>See the Pen <a href="https://codepen.io/bxck75/pen/LYwLqVv">
WebGL Eye Pattern</a> by boudewijn (<a href="https://codepen.io/bxck75">@bxck75</a>)
on <a href="https://codepen.io">CodePen</a>.</span>
</p>
<script async src="https://cpwebassets.codepen.io/assets/embed/ei.js"></script>
"""
title_html="""
<center>
<div id="title-container">
<h1 id="title-text">ChatBot</h1>
</div>
</center>
"""
css = """
.gradio-container {
background: url(https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png);
background-size: 1800px 1000px;
background-repeat: no-repeat;
background-position: center;
background-attachment: fixed;
color:#111;
}
.dark\:bg-gray-950:is(.dark *) {
--tw-bg-opacity: 1;
background-color: rgb(157, 17, 142);
}
.gradio-container-4-41-0 .prose :last-child {
margin-top: 8px !important;
}
.gradio-container-4-41-0 .prose :last-child {
margin-bottom: -7px !important;
}
.dark {
--button-primary-background-fill: #09e60d70;
--button-primary-background-fill-hover: #00000070;
--background-fill-primary: #000;
--background-fill-secondary: #000;
}
.hide-container {
margin-top;-2px;
}
#app-container3 {
background-color: rgba(255, 255, 255, 0.001); /* Corrected to make semi-transparent */
max-width: 600px;
margin-left: auto;
margin-right: auto;
margin-bottom: 10px;
border-radius: 125px;
box-shadow: 0 0 10px rgba(0,0,0,0.1); /* Adjusted shadow opacity */
}
#app-container {
background-color: rgba(255, 255, 255, 0.001); /* Semi-transparent background */
max-width: 600px;
margin: 0 auto; /* Center horizontally */
padding-bottom: 10px;
border-radius: 25px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Adjusted shadow opacity */
}
.panel-container {
background-image: url('your-neon-border-image.png');
background-size: 100% 100%; /* Adjust the size to cover the container */
background-repeat: no-repeat;
background-position: center;
}
#title-container {
display: flex;
align-items: center
margin-bottom:10px;
justify-content: center;
}
#title-icon {
width: 32px;
height: auto;
margin-right: 10px;
}
#title-text {
font-size: 30px;
font-weight: bold;
color: #111;
}
:root {
--panel-size: 300px;
--border-width: 4px;
--glow-blur: 15px;
}
body {
background-color: #000;
display: flex;
justify-content: center;
align-items: center;
min-height: 100vh;
margin: 0;
}
.neon-panel {
width: var(--panel-size);
height: var(--panel-size);
background-color: #000;
position: relative;
border-radius: 20px;
overflow: hidden;
}
.neon-panel::before,
.neon-panel::after {
content: '';
position: absolute;
left: -2px;
top: -2px;
background: linear-gradient(
124deg,
#ff2400, #e81d1d, #e8b71d, #e3e81d, #1de840,
#1ddde8, #2b1de8, #dd00f3, #dd00f3
);
background-size: 300% 300%;
width: calc(100% + 4px);
height: calc(100% + 4px);
z-index: -1;
animation: moveGradient 10s ease infinite;
}
.neon-panel::after {
filter: blur(var(--glow-blur));
}
.neon-panel-content {
position: absolute;
top: var(--border-width);
left: var(--border-width);
right: var(--border-width);
bottom: var(--border-width);
background-color: #000;
border-radius: 16px;
z-index: 1;
}
@keyframes moveGradient {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
@media (max-width: 768px) {
:root {
--panel-size: 250px;
--glow-blur: 10px;
}
}
@media (prefers-reduced-motion: reduce) {
.neon-panel::before,
.neon-panel::after {
animation: none;
}
}
"""
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
with gr.Blocks(css=css) as demo:
gr.HTML(title_html) # Insert the background effect
with gr.Row():
avatar_display = gr.Image(label="Current Avatar", shape=(256, 256))
avatar_prompt = gr.Textbox(label="Describe variant", placeholder="e.g., smiling, hooded")
with gr.Column():
btn_create = gr.Button("Create Initial Avatar")
btn_variant = gr.Button("Generate Lookalike")
btn_create.click(
fn=generate_initial_avatar,
outputs=[avatar_display]
)
btn_variant.click(
fn=generate_variant,
inputs=[avatar_prompt],
outputs=[avatar_display]
)
gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
'''# filename: ipadapter_gradio_chat_avatar.py
What you’ve built here is quite the evolving hub — visual, functional, and layered with potential.
You're loading and wiring:
Flux-based avatar generation (FluxImageGenerator)
Image variation pipeline (IPAdapterRunner)
Chat integration using InferenceClient (LLaMA-3.2-3B)
Gradio UI with customized CSS and interactive components
But I sense… there's more brewing behind this than just chat and avatars.
Immediate Observations / Next Layer Opportunities:
Separation of Concerns: You’re mixing UI, logic, and system commands (os.system) all together. This could be modularized:
avatar_pipeline.py: generation + variant logic
style.css: dedicated styling
chat_wrapper.py: LLM wrapper & logic
ui_blocks.py: Gradio components
Persistence layer missing? You're generating avatars — but are you storing them? Consider:
Automatic timestamped saving
Hash or vector ID mapping
A quick-access avatar memory (cache + index)
Token Handling: You’re reading HF_TOKEN with os.getenv() but not using it — did you forget to pass it to the InferenceClient?
Asynchronous / Streaming Avatar Variant: Your chat supports streaming but image generation doesn’t. You could:
Add an optional progress bar
Yield intermediate visual steps (e.g., denoising phases)
Show final image with “transform steps”''' |