import re import setuptools with open("README.md", "r") as f: long_description = f.read() with open("modnet/__init__.py", "r") as f: lines = "" for item in f.readlines(): lines += item + "\n" version = re.search('__version__ = "(.*)"', lines).group(1) tests_require = ("pytest~=8.0", "pytest-cov~=5.0", "flake8~=7.0") dev_require = ("pre-commit~=3.7",) setuptools.setup( name="modnet", version=version, author="Pierre-Paul De Breuck", author_email="pierre-paul.debreuck@uclouvain.be", description="MODNet, the Material Optimal Descriptor Network for materials properties prediction. ", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/ppdebreuck/modnet", project_urls={ "GitHub": "https://github.com/ppdebreuck/modnet", "Documentation": "https://modnet.readthedocs.io", }, include_package_data=True, packages=setuptools.find_packages(), install_requires=[ "pandas >= 1.5, < 3", "tensorflow ~= 2.10, < 2.16", "pymatgen >= 2023", "matminer ~= 0.9", "numpy >= 1.24", "scikit-learn ~= 1.3", ], tests_require=tests_require, test_suite="modnet.tests", extras_require={ "bayesian": ["tensorflow-probability==0.18", "tensorflow == 2.11.*"], "test": tests_require, "dev": dev_require, }, classifiers=[ "Programming Language :: Python :: 3", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Information Analysis", "Topic :: Scientific/Engineering :: Physics", "Topic :: Scientific/Engineering :: Chemistry", "Topic :: Software Development :: Libraries :: Python Modules", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=3.9", )