Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,6 +21,18 @@ def transcribe(audio):
|
|
| 21 |
|
| 22 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def randomize_seed_fn(seed: int) -> int:
|
| 25 |
seed = random.randint(0, 999999)
|
| 26 |
return seed
|
|
@@ -33,18 +45,17 @@ Respond in a normal, conversational manner while being friendly and helpful.
|
|
| 33 |
[USER]
|
| 34 |
"""
|
| 35 |
|
| 36 |
-
def models(text, seed=42):
|
| 37 |
|
| 38 |
seed = int(randomize_seed_fn(seed))
|
| 39 |
generator = torch.Generator().manual_seed(seed)
|
| 40 |
|
| 41 |
-
client =
|
| 42 |
|
| 43 |
generate_kwargs = dict(
|
| 44 |
max_new_tokens=300,
|
| 45 |
seed=seed
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
formatted_prompt = system_instructions1 + text + "[JARVIS]"
|
| 49 |
stream = client.text_generation(
|
| 50 |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
|
@@ -52,7 +63,6 @@ def models(text, seed=42):
|
|
| 52 |
for response in stream:
|
| 53 |
if not response.token.text == "</s>":
|
| 54 |
output += response.token.text
|
| 55 |
-
|
| 56 |
return output
|
| 57 |
|
| 58 |
async def respond(audio, model, seed):
|
|
@@ -72,6 +82,14 @@ DESCRIPTION = """ # <center><b>JARVIS⚡</b></center>
|
|
| 72 |
with gr.Blocks(css="style.css") as demo:
|
| 73 |
gr.Markdown(DESCRIPTION)
|
| 74 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
seed = gr.Slider(
|
| 76 |
label="Seed",
|
| 77 |
minimum=0,
|
|
@@ -89,8 +107,8 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 89 |
batch=True,
|
| 90 |
max_batch_size=10,
|
| 91 |
fn=respond,
|
| 92 |
-
inputs=[input, seed],
|
| 93 |
outputs=[output], live=True)
|
| 94 |
-
|
| 95 |
if __name__ == "__main__":
|
| 96 |
demo.queue(max_size=200).launch()
|
|
|
|
| 21 |
|
| 22 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 23 |
|
| 24 |
+
def client_fn(model):
|
| 25 |
+
if "Mixtral" in model:
|
| 26 |
+
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 27 |
+
elif "Llama" in model:
|
| 28 |
+
return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
| 29 |
+
elif "Mistral" in model:
|
| 30 |
+
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
|
| 31 |
+
elif "Phi" in model:
|
| 32 |
+
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
|
| 33 |
+
else:
|
| 34 |
+
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
|
| 35 |
+
|
| 36 |
def randomize_seed_fn(seed: int) -> int:
|
| 37 |
seed = random.randint(0, 999999)
|
| 38 |
return seed
|
|
|
|
| 45 |
[USER]
|
| 46 |
"""
|
| 47 |
|
| 48 |
+
def models(text, model="Mixtral 8x7B", seed=42):
|
| 49 |
|
| 50 |
seed = int(randomize_seed_fn(seed))
|
| 51 |
generator = torch.Generator().manual_seed(seed)
|
| 52 |
|
| 53 |
+
client = client_fn(model)
|
| 54 |
|
| 55 |
generate_kwargs = dict(
|
| 56 |
max_new_tokens=300,
|
| 57 |
seed=seed
|
| 58 |
+
)
|
|
|
|
| 59 |
formatted_prompt = system_instructions1 + text + "[JARVIS]"
|
| 60 |
stream = client.text_generation(
|
| 61 |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
|
|
|
| 63 |
for response in stream:
|
| 64 |
if not response.token.text == "</s>":
|
| 65 |
output += response.token.text
|
|
|
|
| 66 |
return output
|
| 67 |
|
| 68 |
async def respond(audio, model, seed):
|
|
|
|
| 82 |
with gr.Blocks(css="style.css") as demo:
|
| 83 |
gr.Markdown(DESCRIPTION)
|
| 84 |
with gr.Row():
|
| 85 |
+
select = gr.Dropdown([ 'Mixtral 8x7B',
|
| 86 |
+
'Llama 3 8B',
|
| 87 |
+
'Mistral 7B v0.3',
|
| 88 |
+
'Phi 3 mini',
|
| 89 |
+
],
|
| 90 |
+
value="Mistral 7B v0.3",
|
| 91 |
+
label="Model"
|
| 92 |
+
)
|
| 93 |
seed = gr.Slider(
|
| 94 |
label="Seed",
|
| 95 |
minimum=0,
|
|
|
|
| 107 |
batch=True,
|
| 108 |
max_batch_size=10,
|
| 109 |
fn=respond,
|
| 110 |
+
inputs=[input, select, seed],
|
| 111 |
outputs=[output], live=True)
|
| 112 |
+
|
| 113 |
if __name__ == "__main__":
|
| 114 |
demo.queue(max_size=200).launch()
|