Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline | |
| from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition | |
| from diffusers.utils import export_to_video, load_video | |
| pipe = LTXConditionPipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-diffusers", torch_dtype=torch.bfloat16) | |
| pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16) | |
| pipe.to("cuda") | |
| pipe_upsample.to("cuda") | |
| pipe.vae.enable_tiling() | |
| def round_to_nearest_resolution_acceptable_by_vae(height, width): | |
| height = height - (height % pipe.vae_temporal_compression_ratio) | |
| width = width - (width % pipe.vae_temporal_compression_ratio) | |
| return height, width | |
| def generate(prompt, | |
| negative_prompt, | |
| steps, | |
| seed): | |
| return | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# LTX Video 0.9.7 Distilled") | |
| prompt = gr.Textbox(label="prompt") | |
| output = gr.Video(interactive=False) | |
| run_button = gr.Button() | |
| with gr.Accordion("Advanced settings", open=False): | |
| n_prompt = gr.Textbox(label="negative prompt", value="", visible=False) | |
| with gr.Row(): | |
| seed = gr.Number(label="seed", value=0, precision=0) | |
| randomize_seed = gr.Checkbox(label="randomize seed") | |
| with gr.Row(): | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=8, step=1) | |
| num_frames = gr.Slider(label="# frames", minimum=1, maximum=30, value=8, step=1) | |
| demo.launch() | |