Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,167 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
| 3 |
import torch
|
| 4 |
import torch.nn.functional as F
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
with torch.no_grad():
|
| 13 |
-
outputs =
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
def
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
comp_embs = torch.cat([get_embedding(s) for s in comparison_list], dim=0)
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
if __name__ == "__main__":
|
| 47 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModel
|
| 3 |
+
from sentence_transformers import CrossEncoder
|
| 4 |
import torch
|
| 5 |
import torch.nn.functional as F
|
| 6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
|
| 8 |
+
# --- Constants ---
|
| 9 |
+
TOP_K_FINAL = 3
|
| 10 |
+
RETRIEVAL_CANDIDATE_COUNT = 20
|
| 11 |
|
| 12 |
+
# --- 1. SETUP: Load all necessary models ---
|
| 13 |
+
|
| 14 |
+
print("Loading Qwen3 Embedding Model (Retriever)...")
|
| 15 |
+
# Using the model you specified
|
| 16 |
+
embedding_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Embedding-0.6B")
|
| 17 |
+
embedding_model = AutoModel.from_pretrained("Qwen/Qwen3-Embedding-0.6B")
|
| 18 |
+
print("Qwen3 Embedding Model loaded.")
|
| 19 |
+
|
| 20 |
+
print("Loading Reranker model (Cross-Encoder)...")
|
| 21 |
+
reranker_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 22 |
+
print("Reranker model loaded.")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# --- 2. CORE FUNCTIONS ---
|
| 26 |
+
|
| 27 |
+
def get_qwen_embeddings_batch(texts):
|
| 28 |
+
"""
|
| 29 |
+
A new function to get embeddings for a BATCH of texts using Qwen3.
|
| 30 |
+
This is much more efficient than one-by-one.
|
| 31 |
+
"""
|
| 32 |
+
# Important: `padding=True` and `truncation=True` are key for batching
|
| 33 |
+
inputs = embedding_tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
| 34 |
with torch.no_grad():
|
| 35 |
+
outputs = embedding_model(**inputs)
|
| 36 |
+
# Extract the [CLS] token's embedding for each text in the batch
|
| 37 |
+
embeddings = outputs.last_hidden_state[:, 0, :]
|
| 38 |
+
return embeddings
|
| 39 |
+
|
| 40 |
+
def process_and_index_document(source_text):
|
| 41 |
+
"""
|
| 42 |
+
This function is triggered by the 'Index Document' button.
|
| 43 |
+
It chunks the text, creates embeddings, and stores them.
|
| 44 |
+
"""
|
| 45 |
+
if not source_text or not source_text.strip():
|
| 46 |
+
# Update the UI to show an error and hide the search bar
|
| 47 |
+
return None, None, "❌ Error: Please provide some source text.", gr.update(visible=False)
|
| 48 |
+
|
| 49 |
+
print("--- Starting document processing ---")
|
| 50 |
+
|
| 51 |
+
# a. Chunk the document
|
| 52 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 53 |
+
chunk_size=500, chunk_overlap=50,
|
| 54 |
+
length_function=len, separators=["\n\n", "\n", " ", ""],
|
| 55 |
+
)
|
| 56 |
+
chunks = text_splitter.split_text(source_text)
|
| 57 |
+
print(f"Document split into {len(chunks)} chunks.")
|
| 58 |
+
|
| 59 |
+
# b. Vectorize the chunks using Qwen3
|
| 60 |
+
print("Vectorizing chunks with Qwen3... (This might take a moment)")
|
| 61 |
+
embeddings = get_qwen_embeddings_batch(chunks)
|
| 62 |
+
print("Vectorization complete. Shape:", embeddings.shape)
|
| 63 |
+
|
| 64 |
+
# c. Return the processed data and update UI
|
| 65 |
+
success_message = f"✅ Document indexed successfully into {len(chunks)} chunks."
|
| 66 |
+
# The last return value makes the search group visible
|
| 67 |
+
return chunks, embeddings, success_message, gr.update(visible=True)
|
| 68 |
+
|
| 69 |
|
| 70 |
+
def search_and_rerank(user_query, document_chunks, document_embeddings):
|
| 71 |
+
"""
|
| 72 |
+
The main search logic (retrieval + reranking).
|
| 73 |
+
This function now takes the chunks and embeddings from the session state.
|
| 74 |
+
"""
|
| 75 |
+
if not user_query or not user_query.strip():
|
| 76 |
+
return [""] * (TOP_K_FINAL * 2)
|
| 77 |
+
|
| 78 |
+
if document_chunks is None:
|
| 79 |
+
return ["Please index a document first."] * (TOP_K_FINAL * 2)
|
| 80 |
+
|
| 81 |
+
# --- STAGE 1: RETRIEVAL ---
|
| 82 |
+
query_embedding = get_qwen_embeddings_batch([user_query]) # Embed the single query
|
| 83 |
+
|
| 84 |
+
# Use PyTorch's cosine similarity
|
| 85 |
+
similarities = F.cosine_similarity(query_embedding, document_embeddings)
|
| 86 |
+
|
| 87 |
+
# Get the top candidates
|
| 88 |
+
top_retrieval_indices = torch.topk(similarities, k=min(RETRIEVAL_CANDIDATE_COUNT, len(document_chunks))).indices
|
| 89 |
+
candidate_chunks = [document_chunks[idx] for idx in top_retrieval_indices]
|
| 90 |
+
|
| 91 |
+
# --- STAGE 2: RERANKING ---
|
| 92 |
+
reranker_input_pairs = [[user_query, chunk] for chunk in candidate_chunks]
|
| 93 |
+
rerank_scores = reranker_model.predict(reranker_input_pairs)
|
| 94 |
|
| 95 |
+
reranked_results = sorted(zip(rerank_scores, candidate_chunks), key=lambda x: x[0], reverse=True)
|
| 96 |
+
|
| 97 |
+
# --- Prepare final output ---
|
| 98 |
+
outputs = []
|
| 99 |
+
for score, chunk in reranked_results[:TOP_K_FINAL]:
|
| 100 |
+
outputs.append(f"Rerank Score: {score:.4f}")
|
| 101 |
+
outputs.append(chunk)
|
| 102 |
|
| 103 |
+
while len(outputs) < TOP_K_FINAL * 2:
|
| 104 |
+
outputs.extend(["", ""])
|
| 105 |
+
|
| 106 |
+
return outputs
|
| 107 |
|
| 108 |
+
# --- 3. GRADIO USER INTERFACE ---
|
|
|
|
| 109 |
|
| 110 |
+
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
| 111 |
+
gr.Markdown("# 🧠 Dynamic RAG with Qwen3 + Reranker")
|
| 112 |
+
gr.Markdown("**Step 1:** Paste your source text below and click 'Index Document'.\n"
|
| 113 |
+
"**Step 2:** Once indexed, use the search bar to ask questions.")
|
| 114 |
|
| 115 |
+
# We use gr.State to hold session-specific data (chunks and embeddings)
|
| 116 |
+
chunks_state = gr.State()
|
| 117 |
+
embeddings_state = gr.State()
|
| 118 |
|
| 119 |
+
with gr.Row():
|
| 120 |
+
source_document_input = gr.Textbox(
|
| 121 |
+
label="Source Document Text",
|
| 122 |
+
placeholder="Paste the full text of your document here...",
|
| 123 |
+
lines=15,
|
| 124 |
+
scale=2
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
index_button = gr.Button("Index Document 🚀")
|
| 128 |
+
status_display = gr.Markdown("Status: Ready to index a document.")
|
| 129 |
+
|
| 130 |
+
# The search UI is hidden until indexing is complete
|
| 131 |
+
with gr.Column(visible=False) as search_ui_group:
|
| 132 |
+
gr.Markdown("---")
|
| 133 |
+
gr.Markdown("### Step 2: Search Your Document")
|
| 134 |
+
query_input = gr.Textbox(
|
| 135 |
+
label="Your Question or Topic",
|
| 136 |
+
placeholder="e.g., What is the main goal of the project?",
|
| 137 |
+
lines=1
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
output_components = []
|
| 141 |
+
for i in range(TOP_K_FINAL):
|
| 142 |
+
with gr.Group():
|
| 143 |
+
score = gr.Textbox(label=f"Result {i+1} Score", interactive=False)
|
| 144 |
+
chunk_text = gr.Textbox(label="Retrieved Chunk", interactive=False, lines=4)
|
| 145 |
+
output_components.extend([score, chunk_text])
|
| 146 |
+
|
| 147 |
+
# --- Connect UI components to functions ---
|
| 148 |
+
|
| 149 |
+
# When the index button is clicked...
|
| 150 |
+
index_button.click(
|
| 151 |
+
fn=process_and_index_document,
|
| 152 |
+
inputs=[source_document_input],
|
| 153 |
+
# The outputs are the state variables, the status message, and the search UI group
|
| 154 |
+
outputs=[chunks_state, embeddings_state, status_display, search_ui_group]
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# When the query input changes (live search)...
|
| 158 |
+
query_input.change(
|
| 159 |
+
fn=search_and_rerank,
|
| 160 |
+
# Inputs must include the state variables
|
| 161 |
+
inputs=[query_input, chunks_state, embeddings_state],
|
| 162 |
+
outputs=output_components
|
| 163 |
+
)
|
| 164 |
|
| 165 |
if __name__ == "__main__":
|
| 166 |
+
print("\nInterface is launching... Go to the printed URL.")
|
| 167 |
+
iface.launch()
|